期刊文献+

基于DCT的Sobel算子的图像边缘检测优化算法 被引量:2

Sobel Operator Edge Detection Optimization Algorithm Based on DCT
下载PDF
导出
摘要 针对Sobel算子会检测出很多的伪边缘,边缘定位精度不够高等问题,提出一种基于DCT的Sobel算子的图像边缘检测优化算法.该算法首先将图像转换成灰度图像,然后做二维DCT变换,获取其低频DCT信息,然后将低频信息与原始图像对比获取其灰度图像信息,接着经过Sobel算子运算,与直接经过Sobel算子运算后的图像进行对比叠加,最终得到图像边缘信息.该方法能更准确地定位出图像边缘,弥补了Sobel的不足. A Sobel operator edge detection optimization algorithm based on DCT is proposed, for a lot of pseudo-edge are detected and the position of edge is not enough accuracy after Sobel operating. In the algorithm, the image is converted to gray scale image, and transformed by two-dimensional DCT to get its low-frequency DCT information. The gray scale image is obtained after comparing the low-frequency information and the original image, then the gray scale is operated through Sobel algorithm and compared with the original image operated by Sobel to obtain the edge information. The method can more accurately detect the position of edge than Sobel.
作者 付克兰 詹旭
出处 《河南科学》 2015年第12期2131-2134,共4页 Henan Science
基金 国家自然科学基金项目(61178068) 四川省教育厅科研项目(14ZB0223)
关键词 SOBEL DCT 边缘检测 Sobel DCT edge detecting
  • 相关文献

参考文献6

二级参考文献44

  • 1赵翔,郝林.数字水印综述[J].计算机工程与设计,2006,27(11):1946-1950. 被引量:46
  • 2Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J].J Cybemet,1973,3(3): 32-57.
  • 3Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York : Plenum Press, 1981.
  • 4Jan A K,Murtym N,Flyrm P J.Data clustering:A review[J].ACM Computer Survey, 1999,31(3 ) :264-323.
  • 5Young WonLin,Lee S U.On the color image segmentation algorithm based on the thresh holding and the fuzzy C_means techniques[J].Pattern Recognitions, 1990,23(6) :935-952.
  • 6Ke J.Fast accurate fuzzy clustering through reduced precision[D]. University of South Florida, 1999.
  • 7Hung Ming_Chuan,Yang Don_Lin.An efficient fuzzy C-means clustering algorithm [C]//Proceedings of IEEE International Conference on Data Mining,SanJose,2001:225-232.
  • 8Tolias Y A,Panas S M.Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions[J].IEEE Trans Syst, Man, Cybernet Part, 1998,28 (3) : 359-369.
  • 9Krishnapuran,Keller J M.A possibilistic c-means algorithm[J].IEEE Trans Fuzzy Syst, 1993(2): 100-112.
  • 10Wang X,Wang Y,Wang L.Improving fuzzy c-means clustering based on feature weight learning[J].Pattern Recognition Lett,2004, 25 : 1123-1132.

共引文献42

同被引文献19

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部