期刊文献+

决策系统在K-means算法中的应用 被引量:3

Application of K-means Algorithm in the Decision MakingSystem
下载PDF
导出
摘要 如今的聚类算法在数据挖掘和信息安全方面已有相当的应用。事实上在大数据时代之中,为了识别已知的或未知的数据则需要将通过数据聚类的算法来计算和实现。数据聚类算法是一种智能性的算法,其可以使得机器通过自我的学习来识别已知和未知的数据。目前的数据聚类算法,有基于划分的聚类算法、基于层次的聚类算法等各种的聚类算法。但在这些聚类算法中经典的算法仍然是基于距离的聚类算法,如K-means算法。因此论文的作者在查阅了一些关于距离聚类的算法之后,提出了将粗糙集中决策系统在K-means算法中进行首次的应用,这是论文的创新点。 Nowadays,clustering algorithms have already applied in data mining and information security.In fact,in the era of large data,in order to identify known or unknown data will need to be calculated and realized through data clustering algorithm.Data clustering algorithm is a kind of intelligent algorithm,which can make the machine identify the known and unknown data through self study.The current data clustering algorithm,clustering algorithm based on clustering,hierarchical clustering algorithm and other clustering algorithm.However,the classical algorithm of clustering algorithm is still based on the distance based clustering algorithm,such as K-means algorithm.So the author of this paper after consulting some about distance clustering algorithm proposes the rough set decision system in the K-means algorithm for the first application,which is the innovation of this paper.
作者 朱俚治
出处 《计算机与数字工程》 2015年第12期2120-2122,2126,共4页 Computer & Digital Engineering
基金 北京航空航天大学软件开发环境国家重点实验室开放基金项目(编号:SKLSDE-2013KF-02)资助
关键词 聚类 决策系统 K-MEANS算法 clustering K-means algorithm decision system
  • 相关文献

参考文献7

二级参考文献45

  • 1蒋天发.INTRANET关键技术及其信息安全新方案的研究[J].武汉理工大学学报(交通科学与工程版),2004,28(5):713-716. 被引量:6
  • 2李桂林,陈晓云.关于聚类分析中相似度的讨论[J].计算机工程与应用,2004,40(31):64-65. 被引量:26
  • 3HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 4JiaweiHan MichelineKamber.Data Mining: Concepts and Techniques[M].北京:机械工业出版社,2001..
  • 5Steve R.W,Motion S.et a1.,Anatomy of a Commercial—Grade Immune System.IBM Research White Paper.1999.
  • 6William C.Learning Trees and Rules with SetValued Features.American Association for Artificial Intelligence(AAAI),1996.
  • 7MaRhew GZ,Eleazer E.et al.,Data Mining Methods for Detection of New Malicious Executables,IEEE Symposium on Security and Privacy,Oakland,CA,May 2001.
  • 8R A Fisher. The USE of multiple Measurements in taxonomicProblems[J]. the Annals of Eugenics, 1936, (7): 179-188.
  • 9David H, Heikki Mannila, Padhraic Smyth. Principles ofData Mining[M].北京:机械工业出版社,2003.4.
  • 10Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction[M].北京:电子工业出版社,2004.1.

共引文献121

同被引文献25

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部