期刊文献+

基于粒子群优化的建筑电耗拆分算法

Building Electricity Consumption Split Algorithm Based on Particle Swarm Optimization
下载PDF
导出
摘要 在建筑能耗监测中,由于部分建筑的配电支路末端包含多种设备,分项能耗数据无法直接计量获取。为此,在数据协调理论的基础上建立建筑能耗拆分模型;采用内点惩罚函数法将约束优化问题转化为无约束问题,并通过粒子群(PSO)优化算法对拆分模型进行求解。实例研究表明,PSO优化所得的分项逐时电耗相对误差分别为9.60%和4.84%,能反映分项电耗数据的逐时局部特征,可用于建筑电耗的实时在线拆分。 Subentry energy consumption data can not directly measured since there are various devices used in the distribution branch terminals of the existing building. The en- ergy consumption decomposition model of buildings is established based on data reconcilia- tion theory. Internal penalty function method is used in processing constraints problem to transform the constrained optimization into unconstrained optimization. The particle swarm optimization is used to solve the decomposition model. The examples show that the relative errors between the calculated electricity consumption results by the PSO algorithm and measurement results of end A and end B are 9.60% and 4.84% respectively. The parti- cle swarm optimization algorithm can be used to decompose the real-time power consump- tion of building energy consumption monitoring system.
出处 《智能建筑电气技术》 2015年第6期62-65,共4页 Electrical Technology of Intelligent Buildings
关键词 分项计量 数据协调 约束优化 PSO算法 sub-metering data reconciliation constrained optimization particleswarm optimization
  • 相关文献

参考文献8

  • 1Laughman C, Lee K, Cox R, et. [J]. Power and Energy Magazine - 63. al. Power signature analysis IEEE, 2003, 1 (2): 56.
  • 2Marceau M L, Zmeureanu R. Nonintrusive load disaggregation computer program to estimate the energy consumption of major end uses in residential buildings [J]. Energy Conversion and Management, 2000, 41 (13) : 1389 - 1403.
  • 3Bazanski M, Voss J. Genetic algorithm for pattern detection in NIALM systems [ C ]. Systems, Man and Cybernetics, 2004 IEEE International Conference on. IEEE, 2004, 4:3462 - 3468.
  • 4H. Akbari. Validation of an algorithm to disaggregate whole- building hourly electrical load into end uses [ J]. Energy, Volume 20. Issue 12. December 1995. Parses 1291 - 1301.
  • 5张亚乐,徐博文,方崇智,康飚.原油蒸馏过程中的数据协调与操作优化[J].清华大学学报(自然科学版),1998,38(3):49-53. 被引量:9
  • 6李红军,秦永胜,徐用懋.化工过程中的数据协调及显著误差检测[J].化工自动化及仪表,1997,24(2):25-33. 被引量:38
  • 7Kuen D R, Davidson H. Computer control: Mathematics of control [J]. Chem Eng Prog, 1961, 57 (6) : 44 -47.
  • 8王晓丽,刘国金,阳春华,王雅琳.基于粒子群优化的磨矿分级过程多层数据协调[J].高校化学工程学报,2012,26(1):139-144. 被引量:1

二级参考文献15

  • 1金思毅,童力,杨朝合,赵文,周传光.基于独立物流的组分流率与总流率平衡的数据校正新方法[J].高校化学工程学报,2004,18(4):477-482. 被引量:2
  • 2刘传政,袁一.关于化工数据校正问题的研究[J].化学工程,1994,22(6):69-72. 被引量:9
  • 3盛跃宾,陈定昌,穆森,任强,张朝阳.有等式约束优化问题的粒子群优化算法[J].计算机工程与设计,2006,27(13):2412-2413. 被引量:19
  • 4Kuehn D R,Davidson H.Computer control:Mathematics of control[J].Chem Eng Prog,1961,57(6):44-47.
  • 5Tjoa I B,Biegler L T.Simultaneous strategies for data reconciliation and gross error detection of nonlinear systems[J].Chem Eng Prog,1991,15(10):679-690.
  • 6Crowe C M.Reconciliation of process flow rates by matrix projection[J].AIChE J,1983,29(6):881-888.
  • 7Simpson D E,Everetta M G.Reducing the number of unknowns in a constrained minimization problem?an application to material balance[J].Appl Math Modelling,1988,12(4):204-212.
  • 8Rao R R,Narasimhan S.Comparison of techniques for data reconciliation of multi-component proeesses[J].Ind Eng Chem Res,1996,35(4),1362-1368.
  • 9Data Reconciliation&Material Balancing[DB/OL].Algosys Inc.(2011),http://www.algosys.com/solutions/bilmat.asp.(2012/1/12).
  • 10袁永根.化工过程的数据校正和参数估计(Ⅰ)[J]化学工程,1986(03).

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部