期刊文献+

pH偏移结合加热处理对大豆分离蛋白结构特性的影响 被引量:6

The Effect of p H-Shifting Combined with Heating Treatment on Structural Properties of Soybean Protein Isolate
原文传递
导出
摘要 探讨了p H偏移结合加热处理对大豆分离蛋白结构特性的影响。将大豆分离蛋白经酸性条件(p H 1.5)结合加热(50和60℃)处理0,1,3,5 h,然后恢复到中性条件,测定处理前、后大豆分离蛋白的总巯基和活性巯基以及紫外二阶光谱、色氨酸内源荧光光谱和蛋白电泳的变化。研究结果表明,p H 1.5偏移结合加热处理条件,大豆分离蛋白的总巯基和活性巯基含量显著下降(P<0.05),其随时间的变化不显著(P>0.05)。紫外扫描和色氨酸荧光分析表明大豆分离蛋白的二级和三级结构发生改变,暴露出更多的疏水基团。SDS-PAGE电泳表明,大豆分离蛋白产生了非二硫键的共价聚集。p H偏移结合加热处理在一定程度上改变了大豆分离蛋白的结构特性。 This study mainly investigated the changes of structural properties of soybean protein isolate(SPI) induced by p H shifting combined with heating treatment. SPI was treated 0, 1, 3, 5 h by acidic p H shifting(p H 1.5) combined with heating(50 ℃ and 60 ℃) treatment, followed by refolding at neutral p H. The total sulfhydryl and reactive sulfhydryl content, UV-Vis spectra and tryptophan fluorescent emission spectrum were investigated. The results revealed that the total sulfhydryl and reactive sulfhydryl content had significant decrease(P〈0.05), but there is no significant change as time extending, while tryptophan fluorescent emission spectrum and UV-Vis spectra showed that second and third structures were changed and more hydrophobic groups were exposed. The SDS-PAGE patterns showed that non-disulphides linkage between proteins was produced by protein aggregation. These results showed that structural characteristics of SPI were changed via p H shifting combined with heating treatment.
出处 《中国食品学报》 EI CAS CSCD 北大核心 2015年第11期219-226,共8页 Journal of Chinese Institute Of Food Science and Technology
基金 国家高技术研究发展计划(863计划)项目(2013AA102208-2)
关键词 大豆分离蛋白 pH偏移 加热 结构 soybean protein isolate pH shifting heating structure
  • 相关文献

参考文献24

  • 1Tang C.H., Wang X.Y., Yang X.Q., et al. Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties[J]. Journal of Food Engineering, 2009, 92(4): 432-437.
  • 2Keerati-u-rai M., Miriani M., Iametti S., et al. Structural changes of soy proteins at the oil-water interface studied by fluoreseence spectroscopy[J]. Colloids and Surfaces B: Biointerfaces, 2012, 93(1): 41-48.
  • 3Roeseh R.R., Corredig M. Characterization of oil-in-water emulsions prepared with commercial soy protein concen- trate[J]. Journal of Food Science, 2002, 7: 2837-2842.
  • 4Lee K.H., Ryu H.S., Rhee K.C. Protein solubility eharacteristics of commercial soy protein products[J]. Journal of the American Oil Chemists" Society, 2003, 80(1): 85-90.
  • 5Goto Y., Calciano L.J., Fink A.L. Acid-induced folding of proteins[J]. Proceedings of the National Academy of Sci- ences of the United State of America, 1990, 87(2): 573-577.
  • 6Hirose M. Molten globule state of food proteins[J]. Trends in Food Science & Technology, 1993, 4(2): 48-51.
  • 7Goto Y., Fink A.L. Conformational states in beta-lactamase: molten-globule states at acidic and alkaline pH with high salt[J]. Biochemistry, 1989, 28(3): 945-952.
  • 8Jiang J., Chen J., Xiong Y.L. Structural and emulsifying properties of soy protein isolate subjected to acid and al- kaline pH-shifting processes[J]. Journal of Agricultural and Food Chemistry, 2009, 57(16): 7576-7583.
  • 9Liang Y., Kristinsson H.G. Structural and foaming properties of egg albumen subjected to different pH-treatments in the presence of calcium ions [J]. Food Research International, 2007, 40(6): 668-678.
  • 10Matsudomi N., Sasaki T., Kato A., et al. Conformational changes and functional properties of acid-modified soy protein [J]. Journal of Agricultural and Biological Chemistry, 1985, 49(5): 1251-1256.

二级参考文献11

  • 1Petruccelli S, Anon M C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates. 2. surface properties [J]. Journal of Agriculture and Food Chemistry, 1994(42): 2 170-2 176.
  • 2Feng J, Xiong Y L. Interaction and functionality of mixed myofibrillar and enzyme-hydrolyzed soy proteins [J]. Journal of Food Science, 2003(68): 803--809.
  • 3Molina Ortiza S E, Wagner J R. Hydrolysates of native and modified soy protein isolates: structural characteristics, solubility and foaming properties [J]. Food Research International, 2002(3): 511-518.
  • 4Lowry O H, Rosembroug H J, Lewis A, et al. Protein measurement with the folin phenol reagent [J]. Journal of Biological Chemistry, 1951(193) :265-275.
  • 5Molina E, Papadopoulou A, Ledward D A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins[J]. Food Hydrocolloids, 2001(15) :263-269.
  • 6Petruccelli S, Anon M C. Thermal aggregation of soy protein isolates[J]. Journal of Agriculture and Food Chemistry, 1995 (43): 3 035-3 041.
  • 7Petruccelli S,Anon M C. Relationship between the method of obtention and the structural and functional properties of soy protein isolates. 1. structural and hydration properties[J]. Journal of Agriculture and Food Chemistry, 1994(42): 2 161-2 169.
  • 8Sorgentini D A, Wagner J R, Anon M C. Effects of thermal treatment of soy protein isolate on the characteristics and structure-function relationship of soluble and insoluble fractions[J]. Journal of Agriculture and Food Chemistry, 1995(43): 2 471-2 479.
  • 9Cheftel J C, Cuq J L , Lorient D. Amino acids, peptides and proteins, In: food chemistry[M]. New York:Marcel Dekker Inc. , 1996, 245-369.
  • 10Kinsella J E. Functional properties of proteins: possible relationships between structure and function in foams[J]. Food Chemistry, 1981(7) : 273-288.

共引文献43

同被引文献54

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部