期刊文献+

线性模型中二阶微分方程的超稳定振动性定理

Super Stable Oscillation Theorems for Two Order Differential Equations in Linear Model
下载PDF
导出
摘要 分析线性模型中二阶微分方程的超稳定振动性,为解决系统的稳定性控制问题提供数学理论基础。对线性模型中二阶微分方程的超稳定性进行幅相裕度优化控制研究,构建二阶微分方程,采用向量Lyapunov函数方法进行了时滞相关特征分解,在异变平衡点分解中采用幅相裕度优化控制方法对微分系统的时滞参数进行稳定性分析,得到了线性模型中二阶微分方程超稳定解,给出了超稳定振动性定理,数学分析得出,线性模型中的二阶微分方程具有超稳定振动性特征,给出的超稳定振动性定理可靠,微分方程的特征解是稳定收敛的,以此指导稳定性控制,提高控制精度和可靠性。 The ultra stable oscillation of the two order differential equations in the linear model is analyzed, and it provides the basis for solving the stability control problem of the system. Super stability of two order differential equations in the lin-ear model of amplitude control of optimization of the phase margin, constructing two order differential equations, using the vector Lyapunov function method decomposes the delay dependent feature, the amplitude and phase margin optimization control method to analyze the stability of time delay differential system decomposition in the alteration of the balance point, get the linear model of two order differential equations of super stable solution, given the ultra stable oscillation theorem, mathematical analysis, two order differential equations in the linear model has the characteristics of ultra stable oscillation, super stable oscillation theorem gives reliable features, the solution of differential equation is stable and convergent, so as to guide the stability control, improve the accuracy and reliability of the control.
作者 刘志扬
机构地区 广东科技学院
出处 《科技通报》 北大核心 2015年第12期7-9,共3页 Bulletin of Science and Technology
基金 广东省教育厅 财政厅立项资助课题(编号:2013WYXM0136)阶段性研究成果
关键词 线性模型 稳定性 微分方程 linear model stability differential equation
  • 相关文献

参考文献5

二级参考文献72

  • 1黄海,陈塑寰,孟光.摄动法结合Pad逼近在结构拓扑重分析中的应用[J].应用力学学报,2005,22(2):155-158. 被引量:6
  • 2YING Hao. Deriving analytical input-output relationship for fuzzy controllers using arbitrary input fuzzy sets and Zadeh fuzzy and operator[J].IEEE Transactions on Fuzzy Systems,2006,(05):654-662.doi:10.1109/TFUZZ.2006.877355.
  • 3WANG Ning,MENG Xian-yao. Analysis structure of three dimensional fuzzy controller[A].2007.2349-2354.
  • 4WANG Ning,MENG Xian-yao. Analytical structures and stability analysis of three-dimensional fuzzy controllers[A].2008.64-69.
  • 5ARPITA S. Analytical structures for fuzzy PID controllers[J].IEEE Transactions on Fuzzy Systems,2008,(01):52-60.doi:10.1109/TFUZZ.2007.894974.
  • 6MOHAN B M,SINHA A. Analytical structure and stability analysis of a fuzzy PID controller[J].Applied Soft Computing Journal,2008,(01):749-758.
  • 7HAJ-ALI A,YING Hao. Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable gains[J].Automatica,2004,(09):1551-1559.doi:10.1016/j.automatica.2004.03.019.
  • 8Meng X Z, Jiao J J, Chen L S. The dynamics of an age structured predator-prey model with disturbing pulse and time delayeds. Nonlinear Anal: RWA, 2008, 9: 547-561.
  • 9Jiao J J, Meng X Z, Chen L S. Stage-sructured Holling mass defence predator-prey model with impulsive perturbations on predators. Appl. Math. Comput” 2008, 189: 1448-1458.
  • 10Shi R Q,Chen L S. Staged-structured Lotka-Volterra predator-prey models for pest management, Appl. Math. Compute 2008, 203: 258-265.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部