期刊文献+

基于行为视觉分析的运动角度规范性智能判断 被引量:6

Standard Intelligent Judgment of Motion Angle Based on Behavior Visual Analysis
下载PDF
导出
摘要 传统的运动角度规范性智能判断方法采用运动链位姿变换坐标系特征分解方法,对运动过程中静态属性和动态属性无法区别判断,纠正效果不好。提出一种基于行为视觉分析的运动角度规范性智能判断方法。采用灰色关联分析方法,在肌体特征运动模式下,估计当前时刻下的运动状态,进行技术型运动项目的运动链位姿分析和技术特征分析,通过Gamma校正法对输入行为视觉图像进行运动角度空间标准化处理,采用行为视觉分析方法实现运动角度规范性智能判断方法改进。仿真结果表明,采用该法进行技术型运动项目的运动角度规范性智能判断,能有效准确地反应出运动的行为视觉特征,对技术特征跟踪标定性能较好,实现对技术型运动的规范性智能评价和判断。 Traditional motion angle intelligent judgment method of the kinematic chain pose coordinate transformation fea-ture decomposition method, movement in the process of static and dynamic attributes can't tell the difference between judg-ment and correction effect is not good. A kind of intelligent judgment method based on the behavior visual analysis is pro-posed.. The grey relational analysis method, in body motion feature model estimated the motion state, technology type sports movement chain pose analysis and technical characteristics are analyzed, through gamma correction method to input visual image of motion angle space standardization processing, using visual behavior analysis method to achieve motion angle in-telligent judgment method improved. Simulation results show that the technology type sports movement angle of intelligent judgment by the method can effectively and accurately reflect the movement of the visual features, on feature technology tracking calibration performance is better, to achieve the technical movement specification of intelligent evaluation and judgment.
作者 于淼
出处 《科技通报》 北大核心 2015年第12期199-201,共3页 Bulletin of Science and Technology
关键词 运动项目 视觉分析 智能判断 属性 sports events visual analysis intelligent judgment attribute
  • 相关文献

参考文献4

二级参考文献99

  • 1赵文彬,张艳宁.角点检测技术综述[J].计算机应用研究,2006,23(10):17-19. 被引量:85
  • 2贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 3杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 4江志军,易华蓉.一种基于图像金字塔光流的特征跟踪方法[J].武汉大学学报(信息科学版),2007,32(8):680-683. 被引量:35
  • 5Enzweiler M,Gavrila D M.Monocular pedestrian detection:survey and experiments[J].Pattern Analysis and MachineIntelligence,IEEE Transactions on,2009,31(12):2179-2195.
  • 6Viola P,Jones M J.Robust real-time face detection[J].International Journal of Computer Vision,2004,57(2):137-154.
  • 7Friedman J,Hastie T,Tibshirani R.Additive logisticregression:A statistical view of boosting[J].Annals ofStatistics,2000,28(2):337-374.
  • 8Viola P,Jones M J,Snow D.Detecting pedestrians usingpatterns of motion and appearance[J].International Journalof Computer Vision,2005,63(2):153-161.
  • 9Dalal N,Triggs B.Histograms of oriented gradients forhuman detection[C] //Computer Vision and PatternRecognition(CVPR),IEEE Computer Society Conference on.2005:886-893.
  • 10Vapnik V,Vladimir N.The Nature of Statistical LearningTheory[M].Berlin,Germany:Springer-Verlag,1995:138-151.

共引文献227

同被引文献63

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部