期刊文献+

中国农业净碳汇空间集聚与分异 被引量:18

Spatial Agglomeration and Variation Of China's Agricultural Net Carbon Sink
下载PDF
导出
摘要 农业净碳汇空间集聚与分异特征,是当前中国农业现代化、生态化转型面临的重大问题。为了精准把握长时间尺度、微观空间单元下中国农业净碳汇空间集聚与分异特征,文章采用全国县域尺度农业数据,结合标准差椭圆方法、探索性空间分析方法等分析工具,对中国县域农业净碳汇空间格局分布规律进行详细探讨。研究表明,(1)从标准差椭圆方法揭示的空间分异格局来看,净碳汇空间分布中心整体存在向东北移动的趋势,空间分布范围存在明显的收缩态势,东北地区净碳汇对全国净碳汇空间格局的影响作用加强。(2)从全局空间自相关揭示的净碳汇空间集聚格局来看,全国净碳汇自1991─2011年经历了集聚—分散的过程。1991─2001年间,空间自相关程度在不断增强,农业生产方式和农业活动结构的相似性在空间上表现得较为明显。2001─2011年,空间自相关系数大幅下降,意味着净碳汇高值集聚区域在空间上逐渐呈现碎片化。(3)从局部空间自相关来看,农业净碳汇高值集聚区不断增多,低值集聚区不断减少,总体上反映了中国农业生产净碳汇在空间格局上呈现出的改善。已经形成了东南地区净碳汇、西北地区负碳汇为主的空间分布格局。 This article uses the calculation method recommended by IPCC and estimate the net carbon sink of China’s agriculture in the past two decades. Then by using the standard deviation ellipses and spatial autocorrelation method, the research analyzes the spatial agglomeration and variation of China’s agricultural net carbon sink from 1991 to 2011.Research shows that: (1) From result of the standard deviation ellipse method, the distribution center of net carbon sink moved towards northeast region of China, which made an important impact on the pattern of net carbon sink. (2) The value of global Moran’s I implies a process of agglomeration and dispersion of the net carbon sink from 1991to2011. (3)The local spatial autocorrelation of net carbon sink shows the cluster of high value is mainly located in the northwest , while the cluster of low value is mainly located in southeast area of China.
出处 《生态环境学报》 CSCD 北大核心 2015年第11期1777-1784,共8页 Ecology and Environmental Sciences
基金 国家重点基础研究发展计划项目(2012CB955800) 国家自然科学基金项目(41071077)
关键词 中国 县域 农业 净碳汇 空间格局 China county-level agricultural net carbon sink spatial pattern
  • 相关文献

参考文献28

  • 1AREVALO J R, WHITTAKER R J. 2011. A reconstruction ofPalaeo-Macaronesia, with particular reference to the long-termbiogeography of the Atlantic island laurel forests [J]. Journal ofBiogeography, 38(2), 226-246.
  • 2CERRI C E P, SPAROVEK G, BERNOUX M, et al. 2007. Tropicalagriculture and global warming: Impacts and mitigation options [J].Scientia Agricola, 64(1): 83-99.
  • 3FARGIONE J, HILL J, TILMAN D, PPLAKSY S, HAWTHORNE P. 2008.Land clearing and the biofuel carbon debt [J]. Science, 319(5867):1235-1238.
  • 4FEARNSIDE P M. 2005. Deforestation in Brazilian Amazonia: history,rates, and consequences. Conservation biology [J]. 19(3): 680-688.
  • 5IPCC, 2006. Guidelines for national greenhouse gas inventories [C]//Eggleston H.S., Buendia L., Miwa K., et al. Japan: NationalGreenhouse Gas Inventories Programme, IGES.
  • 6KEITH P, VERNON C. 1998. CO2 Mitigation by Agriculture: An Overview[J]. Climatic Change, 40(1): 135-162.
  • 7LAL R. 2004. Soil carbon sequestration impacts on global climate changeand food security [J]. science, 304(5677): 1623-1627.
  • 8LUBOWSKI R N, PLANTINGA A J, STAVINS R N. 2006. Land-usechange and carbon sinks: econometric estimation of the carbonsequestration supply function [J]. Journal of Environmental Economicsand Management, 51(2): 135-152.
  • 9US DEPARTMENT OF COMMERCE. 1997. Farm and ranch irrigationsurvey (1998) [C]// Census of Agriculture 1997, 3. Bureau of theCensus, Washington, DC.
  • 10US-EPA. 2006. Global Anthropogenic non-CO2 greenhouse gas emissions:1990─2020 [M]. United States Environmental Protection AgencyEPA430-R-06-005, Washington DC.

二级参考文献347

共引文献1453

同被引文献435

引证文献18

二级引证文献358

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部