期刊文献+

大数据价值挖掘在货运行业的应用初探 被引量:2

The Junior Exploration of Big Data Value Mining in Freight Transportation
原文传递
导出
摘要 物流成本高是货车超载、超速现象普遍的内在因素。利用大数据技术对交通数据进行深度分析进而优化货运调配,是提高货运效率、降低物流成本、实现安全运输的全新利器。本文探讨大数据相关技术以及大数据处理平台的构建理论,提出货运行业大数据价值挖掘系统架构。文章在分析货运大数据的来源、内容、类型、处理手段的基础上,对异构货运大数据进行处理整合,深度分析与挖掘,通过货车实时位置及运行轨迹,结合货运单形成货物迁徙图,为货运行业管理、物流企业、交通管理部门、相关服务企业提供具有深度价值行业信息,为行业规划、企业决策、交通监管提供强有力的支持。 Logistics cost is the internal factor of overloading and speeding. In-depth analysis of traffic data using large data technology and optimizing freight allocation, is a new tool to improve efficiency, reduce logistics cost and achieve safe transportation. This thesis discusses the related technologies of the big data as well as data processing platform theory and proposes freight industry data mining system framework.Based on the analysis of the sources, contents, types and processing methods of freight big data, the paper analyzes and integrates the heterogeneous freight data, and thus form a freight migration map through the combination of real-time position and running track of freight vehicles and the freight documents, which provides a valuable industry information for the industry management, logistics enterprises, transportation management departments and related services and also a good assistance to industry planning, enterprise decision-making, traffic regulating.
出处 《综合运输》 2015年第12期17-21,28,共6页 China Transportation Review
关键词 智能交通 大数据 HADOOP 货运行业 道路运输 货物迁徙图 数据价值挖掘 intelligent transportation big data Hadoop freight transportation road transportation freight migrationmap data value mining
  • 相关文献

参考文献7

二级参考文献3

共引文献4

同被引文献12

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部