期刊文献+

长直机翼的颤振及混沌运动分析 被引量:3

Analysis of flutter and chaos of long straight wing
原文传递
导出
摘要 采用非定常气动力并考虑几何非线性的影响,建立了长直机翼的气动弹性运动方程。运用伽辽金法对方程进行离散,通过数值模拟研究了机翼的颤振特性及混沌运动。结果表明:考虑几何非线性后,出现极限环振动的初始点与线性预测结果基本一致;不同机翼模型,机翼振动从收敛到混沌的过程不同,可由单个极限环振动经拟周期运动进入混沌,也可以由单个极限环到拟周期运动,再回到单环振动,然后经极限环的周期倍化进入混沌状态。 Considering the effects of geometric nonlinearity,the aerodynamic equations of long straight wings were established with unsteady aerodynamic. The Galerkin's method was used to discretize the equations. The characteristics of flutter and chaos were analyzed in time domains by numerical simulation.The results show that the starting point of limit-cycle oscillation considering geometric nonlinearity is basically the same as the linear results. The wing's vibration from convergence to chaos is different from each other. It may be from limit-cycle oscillation to quasi-periodical oscillation,and then to chaos. It may be from limit-cycle oscillation to quasi-periodical oscillation,and then return to period 1,then to chaos by period doubling.
出处 《飞行力学》 CSCD 北大核心 2015年第6期510-513,518,共5页 Flight Dynamics
基金 国家自然科学基金资助(11102170) 中国民航飞行学院科研基金资助(J2013-03)
关键词 颤振 极限环振动 混沌 非线性 flutter limit-cycle oscillation chaos nonlinear
  • 相关文献

参考文献9

  • 1赵永辉,胡海岩.大展弦比夹芯翼大攻角颤振分析[J].振动工程学报,2004,17(1):25-30. 被引量:10
  • 2谢长川,吴志刚,杨超.大展弦比柔性机翼的气动弹性分析[J].北京航空航天大学学报,2003,29(12):1087-1090. 被引量:67
  • 3Hodges D H, Dowell E H. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades [ R ]. NASA-TN-D-7818,1974.
  • 4Tang D, Dowell E H. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings [ J ]. AIAA Journal,2001,39 (8) : 1430-1441.
  • 5Eskandary K, Dardel M, Pashaei M H, et al. Nonlinear aeroelastie analysis of high-aspect-ratio wings in low sub- sonic flow [ J ]. Acta Astronautica,2012,70:6-22.
  • 6Patil M J, Hodges D H. Limit-cycle oscillations in high-as- pect-ratio wings [ J ]. Journal of Fluids and Structures, 2001,15(1) :107-132.
  • 7Shams S, Lahidjani M H S, Haddadpour H. Nonlinear aero- elastic response of slender wings based on Wagner func- tion [ J ]. Thin-Walled Structures, 2008, 46 ( 11 ) : 1192-1203.
  • 8冉玉国,刘会,张金梅,韩景龙.大展弦比机翼的非线性气弹响应分析[J].空气动力学学报,2009,27(4):394-399. 被引量:9
  • 9赵永辉.气动弹性力学与控制[M].北京:科学出版社,2006:167-176.

二级参考文献19

  • 1DUNN P and DUGUNDJI J. Nonlinear stall flutter and divergence analysis of cantilevered graphite/epoxy wings [J]. AIAA Journal, 1992, 30(1) :153-162.
  • 2TANG D M and DOWELL E H. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings[J]. AIAA Journal, 2001, 39(8): 1430-1441.
  • 3TANG D M and DOWELL E H. Experimental and theoretical study for nonlinear aeroelastic behavior of a flexible rotor blade[J]. AIAA Journal, 1993, 31 (6)z 1133-1142.
  • 4HODGES D H and DOWELL E H. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[R]. NASA TN D-7818, Dec. 1974.
  • 5LIU L, WONG Y S. Nonlinear aeroelastic analysis using the point transformation method, Part Ⅰ: freeplay models[J]. Journal of Sound and Vibration, 2002,253 (2) : 447-469.
  • 6DEMAN TANG, DENIS KHOLODAR and EARL H.DOWELL. Nolinear aeroelastic response of a typical airfoil section with control surface freeplay[R]. AIAA- 2000-1621.
  • 7LIU JIKE, ZHAO LINGCHENG. Bifurcation analysis of airfoil in incompressible flow[J]. Journal of Sound and Vibration, 1992,154(1) : 117-124.
  • 8[1]Tran C T, Petot D. Semi-empirical model for the dynamic stall of airfoils inview of the application to the calculation of response of a helicopter blade in forward flight. Vortica, 1981; 5(1): 35-53
  • 9[2]Leishman J G, Beddoes T S. A semi-empirical model for dynamic stall. Journal of the American Helicopter Society, 1989; 34(3): 3-17
  • 10[3]Dunn P, Dugundji J. Nonlinear stall flutter and divergence analysis of cantilevered graphite/epoxy wings. AIAA Journal, 1992; 30(1): 153-162

共引文献76

同被引文献32

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部