摘要
采用非定常气动力并考虑几何非线性的影响,建立了长直机翼的气动弹性运动方程。运用伽辽金法对方程进行离散,通过数值模拟研究了机翼的颤振特性及混沌运动。结果表明:考虑几何非线性后,出现极限环振动的初始点与线性预测结果基本一致;不同机翼模型,机翼振动从收敛到混沌的过程不同,可由单个极限环振动经拟周期运动进入混沌,也可以由单个极限环到拟周期运动,再回到单环振动,然后经极限环的周期倍化进入混沌状态。
Considering the effects of geometric nonlinearity,the aerodynamic equations of long straight wings were established with unsteady aerodynamic. The Galerkin's method was used to discretize the equations. The characteristics of flutter and chaos were analyzed in time domains by numerical simulation.The results show that the starting point of limit-cycle oscillation considering geometric nonlinearity is basically the same as the linear results. The wing's vibration from convergence to chaos is different from each other. It may be from limit-cycle oscillation to quasi-periodical oscillation,and then to chaos. It may be from limit-cycle oscillation to quasi-periodical oscillation,and then return to period 1,then to chaos by period doubling.
出处
《飞行力学》
CSCD
北大核心
2015年第6期510-513,518,共5页
Flight Dynamics
基金
国家自然科学基金资助(11102170)
中国民航飞行学院科研基金资助(J2013-03)
关键词
颤振
极限环振动
混沌
非线性
flutter
limit-cycle oscillation
chaos
nonlinear