期刊文献+

Mackey-Glass时滞系统的稳定性与混沌控制 被引量:2

Stability and chaotic control of Mackey-Glass time-delayed system
下载PDF
导出
摘要 研究了时滞对Mackey-Glass系统动力学的行为影响和混沌控制.首先,时滞反馈控制不能使系统的零平衡点控制为稳定的.对于非零平衡点,从系统线性化方程的特征方程根的分布入手,分别研究了具有单时滞和双时滞系统的线性稳定性.发现当系统中的时滞经过一系列临界值时,系统经历了Hopf分支.其次,应用时滞反馈控制方法,选择合适的反馈增益和时滞使系统在不稳定非零平衡点附近出现周期轨.最后,通过数值模拟检验了理论结果. It is investigated that the effect of delay on dynamic behavior and chaotic control of MackeyGlass system.Firstly,we show that delayed feedback control cannot stabilize the origin.For non-zero equilibrium,the linear stabilities with one delay and two delays are respectively investigated by analyzing the distribution of the roots of associated characteristic equation.It is found that Hopf bifurcations exist when the delays pass through a sequence of critical values.Secondly,applying of delayed feedback control method,by designing appropriate feedback strength and delay,we show that the unstable equilibrium can be controlled to be stable bifurcating periodic solutions at the neighborhood of the equilibrium.Finally,some numerical simulations are carried out for supporting the analytic results.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期30-35,共6页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11361046 11301263) 宁夏自然科学基金资助项目(NZ13213) 宁夏高等学校科研项目(GX2014[222]17)
关键词 稳定性 HOPF分支 混沌吸引子 混沌控制 周期轨 stability Hopf bifurcation chaotic attractor chaotic control period orbit
  • 相关文献

参考文献11

  • 1尹社会,张勇,张付臣,张光云.基于Lorenz系统的强迫Lorenz混沌系统的动力学研究[J].东北师大学报(自然科学版),2014,46(1):42-47. 被引量:18
  • 2秦进.一类三维混沌系统的动力学行为研究[J].东北师大学报(自然科学版),2015,47(1):48-52. 被引量:1
  • 3MACKEY M C,GLASS L. Oscillation and chaos in physiological control system[J]. Science,1977,197:287-289.
  • 4SHAHVERDIEV E M,NURIEV R A* HASHIMOV R H. Chaos synchronization between the Mackey-Gtass systems withmultiple time delays[J]. Chaos,Solitons and Fractals,2006,29:854-861.
  • 5MACKEY M,HEIDEN U. Dynamic diseases and bifurcations in physiological control systems[J]. Funk Biol Med, 1982( 1):156-164.
  • 6BEREZANSKV L, BRA VERM AN E,IDELS L. Mackey-Glass model of hematopoiesis with non-monotone feedback : stability.oscillation and contol[J]. Applied Mathematics and Computation,2013.219:6268-6283.
  • 7侯爱玉,彭震春.离散时滞Mackey-Glass系统的稳定性与分岔[J].湖南工业大学学报,2010,24(5):23-26. 被引量:2
  • 8PYRAGAS K. Synchronization of coupled time delay systems[J], Analytical Estimations Phys Rev E. 1998,58:3067-3071.
  • 9RUAN St WEI J. On the zeros of transcendental functions to stability o. delay differential equations with two delays[J]. DynContin Discrete Impuls Syst A Math Anal .2003.10 : 863-874.
  • 10HALE J K,LUNEL S V. Introduction to functional differential equation[M], New York:Springer-Verlag, 1993: 189-192.

二级参考文献29

  • 1卢俊国.Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization[J].Chinese Physics B,2006,15(2):301-305. 被引量:43
  • 2张树来,田立新,杨广娟.受控Lorenz系统的一些结果及其应用[J].江苏大学学报(自然科学版),2006,27(5):458-462. 被引量:1
  • 3Ruan S, Wei J. On the Zeros of Transcendental Functions with Applications to Stability of Delay Differential Equations with Two Delays[J]. Dynam Continuous Discrete Impuls Syst. Ser. A, 2003, 10: 863-874.
  • 4Song Y, Han M, Wei J. Stability and Hopf Bifurcation on a Simplified BAM Neural Network with Delays[J]. Physica D, 2005, 200: 185-204.
  • 5Mackey M C, Glass L. Oscillation and Chaos in Physiological Control System[J]. Science, 1997, 197: 287-289.
  • 6Hairer E, Wanner G. Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Equations[M]. NewYork: Springer Verlag, 1993: 125-128.
  • 7Zhang C, Zu Y G, Zheng B D. Stability and Bifurcation of a Discrete Red Blood Cell Survival Model[J]. Chaos, Solitions and Fractals, 2006, 28: 386-394.
  • 8DA LIN, HONGJUN LIU,HONG SONG,et al. Fuzzy neural control of uncertain chaotic systems with backlash nonlinearity [J]. International Journal of Machine Learning and Cybernetics,2014,5(5):721-728.
  • 9KUZNETSOV NV,MOKAEV TN, VASILYEV PA. Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor[J]. Communications in Nonlinear Science and Numerical Simulation,2014,19(4) :1027-1034.
  • 10DA LIN, FUCHEN ZHANG,JIAMING LIU. Symbolic dynamics-based error analysis on chaos synchronization via noisy channels[J]. Physical Review, 2014, E90 : 012908.

共引文献18

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部