期刊文献+

CVaR下基于Ф-散度的单周期库存鲁棒优化模型 被引量:6

The Ф-divergence-based robust optimization model of a single-period inventory under CVaR
原文传递
导出
摘要 在离散随机需求情景及概率不确定条件下,针对风险厌恶的库存管理者,建立了基于条件风险值(CVaR)的单周期库存鲁棒优化模型.在仅知离散需求情景条件下,结合统计学理论,采用Ф-散度构建了一定置信水平下的不确定需求概率的置信域;运用拉格朗日对偶理论,将单周期库存鲁棒优化模型转化为易于求解的数学规划问题.特别地,给出了仅知需求情景数据下,基于数据驱动的单周期库存策略.最后,进行了数值计算,分析了不同风险厌恶程度、Ф-函数形式和抽样规模对库存策略和库存管理者绩效的影响.结果表明,基于Ф-散度的鲁棒库存策略具有良好的鲁棒性,能够有效抑制需求概率不确定性对库存绩效的影响.进一步,与数据驱动结果对比,发现基于Ф-散度的鲁棒库存策略能够保证库存管理者获得更为理想的绩效,表明对需求数据所蕴含的统计信息的挖掘能够有效改进库存管理者的运作绩效. The robust optimization model of a single-period inventory based on conditional value-at-risk(CVaR) is established for risk-aversion inventory managers under the discrete stochastic demand with uncertain probability.Using φdivergence,the confidence region of the uncertain demand probability with a certain confidence level is constructed based on statistical theory when only knowing discrete demand scenarios.The robust optimization model of a single period inventory is transformed into a tractable one by Lagrange dual theory.Specially,an inventory strategy based on data-driven is proposed in the setting of only demand scenarios are known.At last,some numerical examples are executed to analyze the impacts of the degree of risk-aversion,the different forms of φ-divergence and the number of sampling on inventory strategy and managers' performance.The results show that the robust inventory strategy based on φ-divergence is robust to restrain the effects of the uncertain demand probability on the inventory performance.Furthermore,comparing with the results derived by data-driven method,the robust inventory strategy based on φ-divergence can ensure inventory managers to get a more ideal performance which indicates that the mining for statistical information implicit in demand data can effectively improve the inventory managers' operation performance.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2015年第12期3056-3064,共9页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71372186) 教育部人文社会科学研究项目(11YJC630165 12YJC630328)
关键词 库存策略 条件风险值 Ф-散度 鲁棒优化 数据驱动 inventory strategy conditional value-at-risk Ф-divergence robust optimization data-driven
  • 相关文献

参考文献25

  • 1Wee H M, Widyadana G A. Single-vendor single-buyer inventory model with discrete delivery order, random machine unavailability time and lost sales[J]. International Journal of Production Economics, 2013, 143(2): 574-579.
  • 2Kalpana P, Kaur A. Ordering decisions of single period split order supply chain with various demand distributions[J]. International Journal of Operational Research, 2013, 16(3): 263-286.
  • 3高春燕,沈厚才.设备多状态、多类顾客制造系统的生产速率和库存分配联合决策[J].系统工程理论与实践,2012,32(11):2504-2511. 被引量:4
  • 4Beyer H G, Sendhoff B. Robust optimization——A comprehensive survey[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(33): 3190-3218.
  • 5Bertsimas D, Goyal V. On the approximability of adjustable robust convex optimization under uncertainty[J]. Mathematical Methods of Operations Research, 2013, 77(3): 323-343.
  • 6Gabrel V, Murat C, Thiele A. Recent advances in robust optimization: An overview[J]. European Journal of Operational Research, 2014, 235(3): 471-483.
  • 7Scarf H, Arrow K J, Karlin S. A min-max solution of an inventory problem[J]. Studies in the Mathematical Theory of Inventory and Production, 1958, 10(1): 201-209.
  • 8Perakis G, Roels G. Regret in the newsvendor model with partial information[J]. Operations Research, 2008, 56(1): 188-203.
  • 9Zhang M. Two-stage minmax regret robust uncapacitated lot-sizing problems with demand uncertainty[J]. Operations Research Letters, 2011, 39(5): 342-345.
  • 10Lin J, Sheng Ng T. Robust multi-market newsvendor models with interval demand data[J]. European Journal of Operational Research, 2011, 212(2): 361-373.

二级参考文献21

  • 1许明辉,于刚,张汉勤.带有缺货惩罚的报童模型中的CVaR研究[J].系统工程理论与实践,2006,26(10):1-8. 被引量:92
  • 2赵道致,何龙飞.Downside-Risk控制下的供应链合作契约研究[J].系统工程理论与实践,2007,27(4):34-40. 被引量:21
  • 3Feng Y, Xiao B. Optimal threshold control in discrete failure-prone manufacturing systems[J]. IEEE Transactions on Automatic Control, 2002, 47(7): 1167 -1174.
  • 4Feng Y, Yan H. Optimal production control in a discrete manufacturing system with unreliable machines and random demands[J]. IEEE Transactions on Automatic Control, 2000, 45(12): 2280- 2296.
  • 5Song D P. Optimal production and backordering policy in failure-prone manufacturing systems[J]. IEEE Trans- actions on Automatic Control, 2006, 51(5): 906-911.
  • 6Song D P, Sun X Y. Optimal hedging point control of a failure-prone manufacturing system[J]. International Journal of Systems Science, 2001, 32(6): 681- 688.
  • 7Akella R, Kumar P R. Optimal control of production rate in a failure prone manufacturing system[J]. IEEE Transactions on Automatic Control, 1986, 31(2): 116- 126.
  • 8Bielecki T R, Kumar P R. Optimality of zero-inventory policies for unreliable manufacturing systems[J]. Opera- tions Research, 1988, 36(4): 532- 541.
  • 9Sharifnia A. Production control of a manufacturing system with multiple machine states[J]. IEEE Transactions on Automatic Control, 1988, 33(7): 620-625.
  • 10Ha A Y. Inventory rationing in a make-to-stock production system with several demand classes and lost sales[J]. Management Science, 1997, 43(8): 1093-1103.

共引文献72

同被引文献75

引证文献6

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部