期刊文献+

hMSH2、hMLH1和p53在乳腺癌的表达及临床意义 被引量:5

Expressions and clinical significance of hMSH2,hMLH1 and p53 in breast cancer
原文传递
导出
摘要 目的研究错配修复基因hMSH2、hMLH1和抑癌基因p53在乳腺癌组织中的表达及临床意义。方法采用免疫组化法检测60例乳腺癌组织及其相应的癌旁正常组织中hMSH2、hMLH1、p53、雌激素受体、孕激素受体和人表皮生长因子受体2的表达,分析其与临床病理学指标的关系。结果乳腺癌组织中hMSH2和hMLH1阳性表达率低于癌旁正常组织(68.33%vs.86.67%和71.67%vs.90.00%)(P<0.05),而p53阳性表达率高于癌旁正常组织(48.33%vs.16.67%)(P<0.05)。乳腺癌组织中hMSH2和p53表达与肿瘤大小、腋窝淋巴结转移有关(P<0.05),p53表达与hMSH2表达存在中度一致性(Kappa=0.407,P<0.01)。结论 hMLH1与乳腺癌发生相关;而hMSH2和p53参与乳腺癌的发生、发展过程,对乳腺癌诊断及预后判断可能具有重要价值。 Objective To investigate the expressions and clinical significance of mismatch repair genes hMSH2 and hMLH1 and cancer suppressor gene p53 in breast cancer. Methods The expressions of hMSH2, hMLH1, p53, estrogen receptor, progestrone receptor and human epidermal growth factor receptor-2 were detected by immunohistochemistry in 60 cases of breast cancer and tumor-adjacent normal tissues. The correlation between the expressions and clinicopathologic characteristics was analyzed. Results The positive expression rates of hMSH2 and hMLH1 in breast cancer were lower than those in tumor-adjacent normal tissues(68. 33%vs. 86.67% and 71.67% vs. 90. 00%)(P〈0. 05), while p53 expression in breast cancer was higher than that in tumor-adjacent normal tissues(48.33% vs. 16.67%)(P〈0. 05). The expressions of hMSH2 and p53 in breast cancer were closely correlated with tumor size and lymph node metastasis(P〈0. 05). Moreover, there was a moderate consistency between the expressions of p53 and hMSH2 (Kappa = 0. 407, P〈0. 01 ). Conclusion hMLH1 is relevant to the occurrence of breast cancer. Whereas hMSH2 and p53 are involved in the development of breast cancer, which may play an important role in the diagnosis and oronosis orediction of the patients with breast cancer.
作者 徐玲玉 江勇
出处 《江苏医药》 CAS 2015年第24期2972-2974,F0003,共4页 Jiangsu Medical Journal
关键词 乳腺癌 HMSH2 HMLH1 P53 Breast cancer hMSH2 hMLH1 p53
  • 相关文献

参考文献1

二级参考文献150

  • 1Stojic L, Brun R, Jiricny J. Mismatch repair and DNA damage signalling. DNA Repair (AmsO 2004; 3:1091-1101.
  • 2Buermeyer AB, Deschenes SM, Baker SM, Liskay RM. Mammalian DNA mismatch repair. Annu Rev Genet 1999; 33:533- 564.
  • 3Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Bio12006; 7: 335 -346.
  • 4Yang W. Structure and function of mismatch repair proteins. Mutat Res 2000; 460:245-256.
  • 5Schofield M J, Hsieh P. DNA mismatch repair: molecular mechanisms and biological function. Annu Rev Microbiol2003; 57:579-608.
  • 6Lahue RS, Au KG, Modrich P. DNA mismatch correction in a defined system. Science 1989; 245:160-164.
  • 7Burdett V, Baitinger C, Viswanathan M, Lovett ST, Modrich P. In vivo requirement for RecJ, ExoVll, Exol, and ExoX in methyl-directed mismatch repair. Proc NatlAcadSci USA 2001; 98:6765-6770.
  • 8Obmolova G, Ban C, Hsieh P, Yang W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 2000; 407:703-710.
  • 9Lamers MH, Perrakis A, Enzlin JH, Winterwerp HH, de Wind N, Sixma TK. The crystal structure of DNA mismatch repair protein MutS binding to a G·T mismatch. Nature 2000; 407:711-717.
  • 10Kadyrov FA, Dzantiev L, Constantin N, Modrich P. Endonucleolytic function of MutLalpha in human mismatch repair. Cell 2006; 126:297-308.

共引文献51

同被引文献48

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部