期刊文献+

斑马鱼生物钟分子遗传学和基因组学研究进展 被引量:2

Molecular genetic and genomic mechanisms of the zebrafish circadian clock
原文传递
导出
摘要 生物钟是生物长期适应地球昼夜循环变化而演化的内在自持的计时机制。生物钟对分子、生化、细胞、生理和行为等基本生命过程起到重要的调节作用。生物钟紊乱会导致机体失调而引发各类疾病。斑马鱼作为一种重要的脊椎动物模型在研究生物钟方面有其独特的特点与优势。现主要综述利用转基因技术、突变体分析和转录组手段等解析斑马鱼生物钟调节机制的最新进展。 The circadian clock is endogenous and self-sustained time-keeping mechanisms evolved from long-term adaptation of life to the cycling physical environment of the Earth, and plays modulatory roles in various fundamental life processes from molecular, biochemical, cellular, physiological, to behavioral levels. Circadian misalignment leads to malfunctions and in-balance of the body, and a variety of diseases. The zebrafish(Danio rerio) as an important animal model has recently figured prominently for investigating regulatory mechanisms of vertebrate circadian clocks. Here we focus on reviewing the latest progresses of employing the transgenic technique, mutational analysis and transcriptome tools to elucidate molecular genetic and genomic mechanisms underlying the zebrafish circadian clock.
出处 《生命科学》 CSCD 2015年第11期1364-1371,共8页 Chinese Bulletin of Life Sciences
基金 国家重大科学研究计划(2012CB947600) 国家自然科学基金重点项目(31030062)
关键词 斑马鱼 生物钟 突变体分析 反向遗传学 基因组学 zebrafish circadian clocks mutational analysis reverse genetics genomics
  • 相关文献

参考文献2

二级参考文献115

  • 1Ben-Shlomo R, Kyriacou CP. Circadian rhythm entrain-ment in flies and mammals. Cell Biochem Biophys, 2002,37(2): 141-156.
  • 2Bass J, Takahashi JS. Circadian integration of metabolismand energetics. Science,2010, 330(6009): 1349-1354.
  • 3Eckel-Mahan K, Sassone-Corsi P. Metabolism control bythe circadian clock and vice versa. Nat Struct Mol Biol,2009,16(5):462-467.
  • 4Vanselow K, Vanselow JT, Westermark PO, Reischl S,Maier B, Korte T, Herrmann A, Herzel H,Schlosser A,Kramer A. Differential effects of PER2 phosphorylation:molecular basis for the human familial advanced sleepphase syndrome (FASPS). Genes Dev, 2006, 20(19):2660-2672.
  • 5Gery S, Komatsu N,Baldjyan L,Yu A,Koo D,KoefflerHP. The circadian gene peri plays an important role in cellgrowth and DNA damage control in human cancer cells.Mol Cell, 2006, 22(3): 375-382.
  • 6Schmutz I,Ripperger JA, Baeriswyl-Aebischer S, AlbrechtU. The mammalian clock component PERIOD2 coor-dinates circadian output by interaction with nuclear recep-tors. Genes Dev,2010,24(4): 345-357.
  • 7Brown SA, Ripperger J, Kadener S,Fleury-Olela F,Vilbois F, Rosbash M, Schibler U. PERIOD 1 -associatedproteins modulate the negative limb of the mammaliancircadian oscillator. Science, 2005, 308(5722): 693-696.
  • 8Pittendrigh CS. Circadian systems. I. The driving oscilla-tion and its assay in Drosophila pseudoobscura. Proc NatlAcad Sci USA, 1967,58(4): 1762-1767.
  • 9Pittendrigh CS, Minis DH. Circadian systems: longevity asa function of circadian resonance in Drosophila melano-gaster. Proc Natl Acad Sci USA, 1972, 69(6): 1537-1539.
  • 10Surowiak J. Quantitative changes of acid phosphatase inthe hypothalamus, pituitary, adrenals, and thyroid of mice(Mus musculus L.) exposed to large, single doses of UV orx-rays, taking into account the circadian rhythm. FoliaBiol (Krakow), 1969,17(2): 105-140.

共引文献169

同被引文献68

  • 1Dunlap JC. Molecular bases for circadian clocks. Cell, 1999, 96(2): 271-90.
  • 2Allada R, White NE, So WV, et al. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell, 1998, 93(5): 791-804.
  • 3Emery P, So WV, Kaneko M, et al. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell, 1998, 95(5): 669-79.
  • 4Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA, 1971, 68(9): 2112-6.
  • 5Saez L, Meyer P, Young MW. A PER/TIM/DBT interval timer for Drosophila's circadian clock. Cold Spring Harb Symp Quant Biol, 2007, 72:69-74.
  • 6Bell-Pedersen D, Cassone VM, Earnest D J, et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet, 2005, 6(7): 544-56.
  • 7Busino L, Bassermann F, Maiolica A, et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science, 2007, 316(5826): 900-4.
  • 8Grimaldi B, Nakahata Y, Kaluzova M, et al. Chromatin remodeling, metabolism and circadian clocks: the interplay of CLOCK and SIRT1. Int J Biochem Cell Biol, 2009, 41(1): 81-6.
  • 9Zhang R, Lahens NF, Ballance HI, et al. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA, 2014, 111(45): 16219- 24.
  • 10Yang G, Paschos G, Curtis AM, et al. Knitting up the raveled sleave of care. Sci Transl Med, 2013, 5(212): 212rv3.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部