期刊文献+

丝电弧等离子体强化超声速点火和燃烧 被引量:4

Thread Arc Plasma Assisted Supersonic Ignition and Combustion
下载PDF
导出
摘要 在总结国外关于丝电弧等离子体强化超声速点火和燃烧现状的基础上,分析了丝电弧等离子体强化超声速点火和燃烧的特点.基于等离子体点火强化超声速燃烧的基本原理,设计了4种丝电弧等离子体强化超声速点火和燃烧的电极布置方案,凹槽式燃烧室强化燃烧方案、平板式单排纵向放电强化燃烧方案、平板式双排横向放电强化燃烧方案和平板式多排纵向放电强化燃烧方案.对每种方案的优缺点进行了分析;设计了丝电弧等离子体强化超声速点火和燃烧的放电特性试验系统,并进行了初步的放电试验. Based on the analysis of research status of thread arc plasma assisted supersonic ignition and combustion, the characteristics of thread arc plasma assisted supersonic ignition and combustion were ana- lyzed. Based on the basic principles of plasma assisted ignition and combustion, four arrangement schemes of thread arc plasma assisted supersonic ignition and combustion were designed. The four schemes were recessed as- sisted combustion, flatbed single row vertical discharge assisted combustion, flatbed double transverse discharge assisted combustion, and flatbed multi-row vertical discharge assisted combustion. The advantages and disadvantages of each scheme were analyzed. The test system for the discharge characteristics of thread arc plasma assisted super- sonic ignition and combustion was designed, and a preliminary discharge experiment was conducted. At last, some discharge experiments were performed.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2015年第6期511-515,共5页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51106179 51436008)
关键词 丝电弧等离子体 等离子体火炬 等离子体强化点火和燃烧 超声速气流 thread arc plasma plasma torch plasma assisted ignition and combustion supersonic flow
  • 相关文献

参考文献18

  • 1李钢,李华,杨凌元,徐燕骥,聂超群,朱俊强.俄罗斯等离子体点火和辅助燃烧研究进展[J].科技导报,2012,30(17):66-72. 被引量:24
  • 2侯凌云,龚景松,柳发成,马雪松,刘小勇.超燃模型发动机中引入催化重整燃气的试验研究[J].燃烧科学与技术,2012,18(1):33-37. 被引量:1
  • 3Northam G B, McClinton C R, Wagner T C, et al. Development and evaluation of a plasma jet flame holder for scramjets [C]//AIAA Pape;,. 1984, 1984-1408.
  • 4Wagner T, O'Brien W, Northam G, et al. Plasma torch igniter for scramjets [J]. Journal of Propulsion and Power, 1989, 5(5): 548-554.
  • 5Matsubara Y, Takita K, Masuya G. Combustion en- hancement in a supersonic flow by simultaneous opera- tion of DBD and plasma jel: [J]. Proceedings of the Combustion Institute, 2013, 34: 3287-3294. Chianese.
  • 6S G, Fisher K K, /vlicci M M. Microwave air plasma supersonic hydrocarbon combustion enhancement experiments [C]//37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Salt Lake City, Utah, USA, 2001: AIAA2301-3937.
  • 7Brieschenk S, O'Byme S, Kleine H. Laser-induced plasma ignition studies in a model scramjet engine [J]. Combustion andFlame, 2013, 160(1) : 145-148,.
  • 8Yarantsev D A, Leonov S B, Biturin V A, et al. Spec- troscopic diagnostics of plas:aaa assisted combustion in high-speed flow [C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technolo- gies. 2005, AIAA 2005-3396.
  • 9Leonov S B, Yarantsev D A. Plasma-assisted ignition and flameholding in high-speed flow [C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2006, AIAA2006-563.
  • 10Leonov S B, Carter C, Starodubtsev M, et al. Mecha- nisms of fuel ignition by electrical discharge in high- speed flow [C]// 14th AIAA/AHI Space Planes Hyper- sonic Systems Technologies Conf. Canberra, Australia, 2006: AIAA2006-7908.

二级参考文献43

  • 1Vinogradov V, Kobigsky S, Petrov M. Experimental investigation of liquid carbon hydrogen fuel combustion in channel at supersonic velocities [C]//AIAA. Nashville, Tennessee, 1992, AIAA92-3429.
  • 2Andrews E H, Trexler C A, Emami S. Tests of a fixed- geometry inlet-combustor configuration for a hydrocar- bon-fueled dual-mode scramjet[C]//AIAA. Indianapolis, Indiana, 1994, AIAA-1994-2817.
  • 3Gurijanov E J, Harsha P T. AJAX: New directions in hypersonic technology [C] //AIAA. Norfolk, Virginia, 1996, AIAA-96-4609.
  • 4Korabelnikov A V, Kuranov A L. Thermal protection endothermic fuel conversion[C]//AIAA. Capua, Italy, 2005, AIAA2005-3368.
  • 5Fu Weibiao, Hou Lingyun, Zhong Beijing, et al. An analysis of the ignition of premixed gases by a hot spherical surface with catalytic reforming reaction[J]. Fuel, 2003, 80: 9-21.
  • 6Hou Lingyun, Fu Weibiao. Study on the mechanism of saving fuel-consumption for emulsified fuel with wall catalytic reforming reaction [J]. Combustion Science and Technology, 2005, 177(4): 671-689.
  • 7Hou Lingyun, Gong Jingsong, Lu Xiaofeng. Conver- sion of emulsified kerosene with catalytic reforming in a gas generator[J]. Combustion Science and Technol- ogy, 2010, 182(10): 1478-1490.
  • 8卢小丰.催化重整反应在超燃冲压发动机燃气发生器中的研究[D].北京:清华大学,2006.
  • 9Starikovskaya S M, Kukaev E N, Kuksin A Y, et al. Analysis of the spatial uniformity of the combustion of a gaseous mixture initiated by a nanosecond discharge[J]. Combustion and Flame, 2004, 139(3): 177-187.
  • 10Bozhenkov S A, Starikovskaya S M, Starikovskii A Y. Nanosecond gas discharge ignition of H2- and CH4-containing mixtures [J]. Combustion and F/ame, 2003, 133(1): 133-146.

共引文献23

同被引文献45

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部