期刊文献+

基于KPCA与MPSO–BP注射成型工艺参数优化 被引量:3

Study on Parameters Optimization of Injection Molding Based on KPCA and Modifi ed Particle Swarm Optimized Back Propagation Neural Network
下载PDF
导出
摘要 针对注塑过程中工艺参数的优化选择问题,提出一种融合核主元分析方法 (KPCA)与改进粒子群算法优化BP神经网络的成型工艺参数优化方法。首先,对正交实验数据作为训练样本的工艺参数利用核主元分析方法进行降维、拨冗余,约减网络结构;其次,针对BP易陷入局部最优、收敛效率低的不足,改进粒子群算法中粒子速度与位置更新策略并优化BP算法的权值和阈值,从而构建了工艺参数预测模型。在此基础上,实现粒子群算法寻优最佳的注射成型工艺参数。结果表明,该方法能够更快、更好地获得注射成型中的工艺参数,且以此工艺参数进行实验,塑料件的翘曲变形量、收缩率均较小。 For optimization selection of process parameters in injection molding process,molding process parameters optimization method which fuses kernel principal component analysis (KPCA) method,modified particle swarm optimization (PSO) algorithm and BP neural network is proposed. Firstly,the kernel principal component analysis method is employed to reduce thedimensionality,get rid of the redundancy,do reduction of network structure. Subsequently,a prediction model about process parameters and the optimized objectives is established, because BP is easy to fall into local optimum and low convergence efficiency,particle swarm algorithm in the particle's velocity and location update strategy is improved and the weights and thresholds of BP algorithm are optimized. On this basis,the injection molding process parameters of the optimization of particle swarm optimization is realized. The experimental analysis shows that the war page and the shrinkage of the plastic parts both become smaller with the proposed method,which demonstrates this algorithm can provide a faster and better tool to optimize injection molding process parameters.
出处 《工程塑料应用》 CAS CSCD 北大核心 2015年第12期42-47,共6页 Engineering Plastics Application
基金 国家自然科学基金项目(61134001) 内蒙古科技厅高新技术领域科技计划重大项目(20130302)
关键词 核主元分析 BP神经网络 改进粒子群算法 注射成型 工艺参数优化 kernel principal component analysis BP neural network modified particle swarm optimization injection molding optimization of process parameters
  • 相关文献

参考文献11

  • 1Dang Xuan-Phuong. General frameworks for optimization of plastic injection molding process parameters[J]. Simulation Modelling Practice and Theory, 2014,41 (6): 125-254.
  • 2Bharti P K. Recent methods for optimization of plastic injection molding process-A retrospective and literature review[J]. International Journal of Engineering Science and Technology, 2010, 32(9):4 540-4 554.
  • 3盛湘飞,黄放,罗湛.基于神经网络汽车门把手的注塑工艺参数优化[J].塑料,2010,39(6):11-13. 被引量:9
  • 4Yin Fei, Mao Huajie, Lin Hua. A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters[J]. Materials & Design, 2011,32(5):3 457-3 464.
  • 5郑子军,欧长劲,卢康.基于RBF网络模型气辅成型工艺参数的优化[J].塑料科技,2013,41(2):79-83. 被引量:5
  • 6Szekely N. Simplifying the model of a complex industrial process using input variable selection[J]. Periodica Polytechnica Electrical Engineering,2003,47(1 / 2):141-147.
  • 7赵立杰,柴天佑,王纲.多元统计性能监视和故障诊断技术研究进展[J].信息与控制,2004,33(2):197-201. 被引量:18
  • 8王建国,吴庆朝,秦波,张娟娟,张文兴,陈林.粒子群优化支持向量机的BOF用氧量预报研究[J].铸造技术,2014,35(8):1806-1809. 被引量:8
  • 9Parsopoulos K E, Vrahatis M N. Parameter selection and adaptation in unified particle swarm optimization[J]. Mathematical and Computer Modelling,2007,46(1): 1985 13.
  • 10Hornik K, Stinchcombe M, White H. Multilayer feed-forward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366.

二级参考文献102

共引文献41

同被引文献99

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部