期刊文献+

基于单路脑电的睡眠分期判别方法研究 被引量:1

A Sleep Staging Method Based on Single Channel EEG Signal
下载PDF
导出
摘要 睡眠是一种重要的生理现象,对睡眠进行合理分期,是研究睡眠质量、诊断睡眠疾病的基础。脑电是睡眠过程中最显著和直观的信号,也是研究睡眠的重要且有力的工具。本研究提取了多种脑电相关特征作为识别睡眠脑电信号的指标,并采用多元逐步回归分析法进行特征筛选,通过线性分类及支持向量机(SVM)算法实现了脑电睡眠分期的自动判别。实际测试结果表明,基于单路脑电的睡眠分期判别方法的平均正确率为78.85%,说明该方法较为准确。 Sleep is an important physiological phenomenon and sleep staging is the basis for evaluation of sleep quality and diagnosis of sleep diseases. As the most significant and intuitive signal, EEG(Electroencephalograph) signal has been widely used in sleep studies. In this paper, a variety of EEG correlation characteristics were extracted to identify sleep EEG signals and feature selection was performed by the multiple stepwise regression method. Then sleep staging was realized by linear classification and support vector machine(SVM) algorithm. According to the actual test results, the average accuracy of the sleep staging method based on single channel EEG signal was 78.85%, which proved the effectiveness of the method.
出处 《中国医疗设备》 2015年第12期34-37,共4页 China Medical Devices
基金 国家自然科学基金(7151101018) 北京市日新人才(015000514115006)
关键词 睡眠监护系统 睡眠分期 单路脑电 多元逐步回归分析 线性分类 支持向量机 sleep staging single channel electroencephalograph multiple stepwise regression analysis linear classification support vector machine
  • 相关文献

参考文献15

  • 1Randerath WJ, Sanner BM,Somers VK.Sleep apnea:current diagnosis and treatment[M].Rochester, MN,2006.
  • 2White DESleep apnea[J] Proc Am Thorac Soc,2006,(3): 124-128.
  • 3Young T, Peppard PE,Gottlieb DJ.Epidemiology of obstructive sleep apnea:a population health perspective[J].Am JRespir Crit Care Med,2002,165(9):1217-1239.
  • 4Hod T, Sugita Y, Koga E et a/.Proposed supplements and amendments to'A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects', the Rechtsebaffen& Kales(1968)standard[J].Psyehiat Clin Neuros,2001,5 5( 3 ):3 05-310.
  • 5Nieuwenhuijs DJ.Processed EEG in natural sleep[J].Best Pratt Res Clin Anaesthesiol,2006,20(1):49-56.
  • 6Koley B,Dey D.An ensemble system for automatic sleep stage classification using single channel EEG signal[J].Comput Biol Med, 2012,42(12):1186-1195.
  • 7Estrada E,Nazeran H,Nava P, et a/.EEG feature extraction forclassification of sleep stages[C].26th Annual International Conference of the IEEE,2004.
  • 8Sim6es H,Pires G,Nunes U,et al.Feature Extraction and Selection for Automatic Sleep Staging using EEG[C].IC1NCO,2010.
  • 9Ebrahimi F,Mikaeili M,Estrada E,et al.Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients[C].30th Annual International Conference of the IEEE,2008.
  • 10刘冬冬,张玲,杨晓文,张博,武文芳.基于经验模式分解的心肺耦合技术在睡眠分析中的应用[J].中国医疗设备,2015,30(6):28-32. 被引量:12

二级参考文献26

  • 1朱静,张晓君.睡眠呼吸暂停综合征认知功能障碍研究新进展[J].国外医学(耳鼻咽喉科学分册),2004,28(5):273-275. 被引量:2
  • 2佟光明,郭继鸿,张兆国,韩芳,李静,韩旭,张海澄.应用心率变异性初筛睡眠呼吸暂停低通气综合征[J].中国心脏起搏与心电生理杂志,2007,21(1):44-46. 被引量:8
  • 3冯舒,段靓瑜,江朝晖,冯焕清.长时间单调模拟驾驶对疲劳的影响研究[J].中国安全科学学报,2007,17(2):66-71. 被引量:18
  • 4[4]Pierre Thiffault,Jacques Bergeron.Fatigue and individual differences in monotonous simulated driving[J].Personality and individual Differences,2003,(34):159~176
  • 5[5]Wassim El Falou,Jacques Duchene.Evaluation of driver discomfort during long-duration car driving[J].Applied Engonomics,2003,(34):249~255
  • 6[6]Sara Contardi,Fabio Pizza,Elisa Sancisi.Reliability of a driving simulation task for evaluation of sleepiness[J].Brain Research Bulletin,2004,(63):427~431
  • 7[7]2006年度中华人民共和国道路交通事故统计年报[M].公安部交通管理局,2007
  • 8Young T,Peppard PE,Gottlieb DJ.Epidemiology of obstructive sleep apnea:a population health perspective[J].Am J Respir Crit Care Med,2002,165(9):1217-1239.
  • 9StradlingJR,Davies RJ.Sleep 1:Obstructive sleep apnoea/hypopnoea syndrome:definitions, epidemiology,and natural history[J].Tho rax, 2004,59(1):73-78.
  • 10Sateia MJ.Neuropsychological impairment and quality of life in obstmctive sleep apnea[J].Clin Chest Med,2003,24(2):249-259.

共引文献37

同被引文献16

  • 1Shorvon SD,Perucca E,Fish DR,et al.癫痫治疗学[M].肖波,刘献增,龙小艳,等.北京:人民卫生出版社,2010:216-220.
  • 2Dimitriadis SI,Laskaris NA,Tsirka V, et al.Tracking brain dynamics via time-dependent network analysis[J].J Neurosci Methods,2010,193(1):145-155.
  • 3Slam CJ.Nonlinear dynamical analysis of EEG and MEG:review of an emerging field[ J].Clin Neurophysiol,2005,116(10 ):2266-2301.
  • 4Quian Quiroga R,Kraskov A,Kreuz T, et al.Performance of different synchronization measures in real data:A case study on electroencephalographic signals[J].Phys Rev E,2002,65(041903): 1-14.
  • 5van Diessen E,Diederen SJ,Braun KP, et a/.Functional and structural brain networks in epilepsy:what have we learned?[J]. Epilepsia,2013,54(11) : 1855-1865.
  • 6Prinz AA.Understanding epilepsy through network modeling[J]. Proc Natl Acad Sci USA,2008,105(16):5953-5954.
  • 7Onias H,Viol A,Palhano-Fontes F, et a/.Brain complex network analysis by means of resting state fMRI and graph analysis:will it be helpful in clinical epilepsy?[J].Epilepsy Behav,2014,38:71-80.
  • 8Dyhrfjeld-Johnsen J,Santhakumar V, Morgan RJ,et al. Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyms derived from experimental data[J]jNeurophysiol,2007,97(2): 1566-1587.
  • 9Burns SP, Santaniello S,Yaffe RB,et a/.Network dynamics of the brain and influence of the epileptic seizure onset zone[J].Proc Natl Acad Sci USA,2014,111(49):E5321-E5330.
  • 10Jirsa VK, Stacey WC,Quilichini PP, et al.On the nature of seizure dynamics[J].Brain,2014,137(Pt 8):2210-2230.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部