期刊文献+

一种半自磨机智能控制技术 被引量:8

An Intelligent Control Technology for Semi-autogenous Mill
下载PDF
导出
摘要 半自磨机具有多变量、非线性、强耦合、大滞后、时变性等特征,且很多过程参数难以检测,难以通过常规控制方法实现自动控制。为此,乌山选矿厂以人工经验为基础,找出半自磨机工作时给矿量、磨音、功率、轴压、磨矿浓度、给矿粒度比例之间的关系,并用计算机语言表述出来,得到一种定性的智能控制系统。实践表明:这种半自磨机智能控制系统可根据服务器设定的控制策略,实时采集半自磨机过程参数,自动调整至最优的半自磨机运行状态,在乌山选矿厂应用后较原人工控制可以提高处理量24.7 t/h、延长衬板使用寿命11.1 d、降低吨矿能耗0.49 k Wh/t,具有显著的经济效益,在金属矿山领域具有重要推广应用前景。 Semi-autogenous grind mill has many complex features such as multivariable,nonlinear,strong coupling,large lag,time-varying and so on,and many process parameters are difficult to be detected and control by conventional control method. Therefore,Wushan plant find out relationship among semi-autogenous grind mill feed ore granularity,mill noise,power,axial pressure,grinding concentration,feeding capacity during working,based on the human experience,and expressed by computer language,a qualitative,intelligent control system was obtained. Practice shows that semi-autogenous grind mill can control system according to the control strategy of the server settings,real-time acquisition the mill process parameters,automatically working on optimal parameters on semi-autogenous grind mill process,compared with the original manual control in Wushan Plant,the feeding capacity increased 24. 7 t/h,prolong the service life of the lining board 11. 1 d,mine energy consumption decreased0. 49 k Wh/t,has significant economic benefits,has important application prospects in the field of metal mine.
作者 孙静 吴同春
出处 《金属矿山》 CAS 北大核心 2015年第12期124-128,共5页 Metal Mine
关键词 半自磨机 智能控制 磨音 给矿量 Semi-autogenous grinding Intelligent control Mill noise Feeding capacity
  • 相关文献

参考文献4

二级参考文献15

  • 1MENDEZ D A, GALVEZ E D, CISTERNAS L A. Cisternas Modeling of grinding and classification circuits as applied to the design of flotation processes[J]. Computers & Chemical Engineering, 2009,33 ( 1 ) : 97-111.
  • 2GONZALEZ G D, MIRANDA D, CASALI A, et al. Detection and identification of ore grindability in a semiautogenous grinding circuit model using wavelet transform variances of measured variables [J].International Journal of Mineral Processing, 2008, 89(1) :53-59.
  • 3CHOI T J, SUBRAHMANYA N, LI H, et al. Generalized practical models of cylindrical plunge grinding processes [J ]. International Journal of Machine Tools and Manufacture, 2008,48 ( 1 ) : 61-72.
  • 4ZHANG R X, HUANG G B, SUNDARAJAN N, et al. Improved GAP-RBF network for classification problems [J]. Neuroeomputing, 2007, 70 ( 16): 3011-3018.
  • 5AGUIRRE L A, ALVES G B, CORREA M A. Steady-state performance constraints for dynamical models based on RBF networks [J].Engineering Applications of Artificial Intelligence, 2007, 20 (7) 924-935.
  • 6BEHOUNRK L. On the difference between traditional and deductive fuzzy logic[J].Fuzzy Sets and Systems, 2008,159(10) :1153-1164.
  • 7CIRIC M, IGNJATOVIC J, BOGDANOVIC S. Fuzzy equivalence relations and their equivalence classes[J]. Fuzzy Sets and Systems, 2007,158(12):1295-1313.
  • 8KENNEDY J, EBERHART R. Particle swarm optimization E M3. Perth, Australia: [s. n. ], 1995: 1942-1948.
  • 9ZHANG J, MORRIS A. Fuzzy neural networks for nonlinear systems modeling [J]. Control Theory and Application, 1995, 142(6) :551-561.
  • 10HASEGAWA T, HORIKAWA S I, FURUHASHI T, et al. On design of adaptive fuzzy controller using fuzzy neural networks and a description of its dynamical behavior[J].Fussy Sets and Systems, 1995, 71(1): 3-23.

共引文献25

同被引文献54

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部