期刊文献+

有导师学习的k-means方法在多支持向量机中的线性划分及其在石油储层识别中的应用

Linear Separation in Multi-Support Vector Machine with Supervised k-Means and its Applications in Oil Reservoir Recognition
下载PDF
导出
摘要 提出了一种带有指导信息的k-means方法多支持向量机(SkSVM)。带有指导信息的k-means方法多支持向量机中k-means的目标是对训练数据进行划分,附加指导信息是保证k-means在对训练数据进行划分过程中确保数据的划分子集同时来自不同的2个类,即划分的子集中有正标签(+1)和负标签(-1)的数据,并且子集的中心尽量靠近不同类别的分离边界,保证提供的数据子集能够高效地为支持向量机进行学习。对每一个划分的子集采用支持向量机进行学习。选取UCI标准测试集对SkSVM和已有的FaLKSVM、SVM-KNN和CSVM算法进行对比测试。最后,用SkSVM、k-means和SVM等3种分类方法对江汉油田某区块oilsk81、oilsk83和oilsk85三口油井进行石油储层识别(油层和非油层),其中,各油井数据2/3作为训练数据,1/3作为测试数据,结果表明,在识别准确率上,SkSVM方法都优于其他两种方法。 We present a multi-Support Vector Machine with supervised k-means(SkSVM).The main idea of SkSVM is as follows.The training dataset is divided into subsets by k-means method with additional guidance information and are trained by linear SVM independently.The additional guidance information ensures that data subsets are from two different classes at the same time,that is,apositive label(+1)and negative label(-1)data;furthermore,the center of the subset is as close to the separation boundary as possible so that the SVM learns from each subset efficiently.We use UCI benchmark to test SkSVM and compare SkSVM with CSVM,SVM-KNN and CSVM.Then SkSVM,k-means and SVM classification methods are used to recognize oil reservoir(inferiority layer and oil layer)in oilsk81,oilsk83,oilsk85 wells in Jianghan oil field in China,where for each well,2/3data is used as training data and the rest datais used as test data.The results show that the SkSVM method gain higher recognition accuracy than the other two methods.
出处 《系统管理学报》 CSSCI 北大核心 2015年第6期835-841,共7页 Journal of Systems & Management
基金 国家自然科学基金资助项目(71103163 71103164 71573237) 中央高校基本科研业务费专项资金资助项目(CUG120111 CUG110411 G2012002A CUG140604) 教育部人才社会科学研究规划基金资助项目(15YJA630019) 教育部新世纪优秀人才支持计划资助项目(NCET-13-1012) 构造与油气资源教育部重点实验室开放课题资助项目(TPR-2011-11)
关键词 支持向量机 K-MEANS 石油储层 support vector machine k-means oil reservoir
  • 相关文献

参考文献17

  • 1Joachims T. Transductive inference for text classi- fication using support vector machines[C]//Sixteenth Internation Conference on Machine Learning, 1999: 200-209.
  • 2Osuna E, Freund R, Girosi F. Training support vector machines: An application to face detection[J]. Proc. Conf. Computer Vision and Pattern Recognition, 1997(6) : 130-136.
  • 3Chen B, Hu J. Hierarchical multi-label classification based on over-sampling and hierarchy constraint for gene function prediction[J]. IEEJ Trans. on Electrical and Electronic Engineering, 2012, 7(2) : 183-189.
  • 4程军圣,于德介,杨宇.基于SVM和EMD包络谱的滚动轴承故障诊断方法[J].系统工程理论与实践,2005,25(9):131-136. 被引量:25
  • 5李正欣,赵林度.基于贝叶斯框架下LS-SVM的时间序列预测模型[J].系统工程理论与实践,2007,27(5):142-146. 被引量:11
  • 6Cheng H, Tan P N, Jin R. Efficient algorithm for localized support vector machine [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(4): 537-549.
  • 7Cortes C, Vapnic V. Support vector networks[J]. Machine Learning, 1995, 20(1) :1-25.
  • 8Vapnic V. Statistical learning theory [M]. New York: Wiley, 1998.
  • 9Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Knowledge Discovery and Data Mining, 1998,2(2) : 121-167.
  • 10Kanungo T, Mount D, Netanyahu N, et al. An efficient k-means clustering algorithm: Analysis and implementation[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892.

二级参考文献28

  • 1阎威武,常俊林,邵惠鹤.一种贝叶斯证据框架下支持向量机建模方法的研究[J].控制与决策,2004,19(5):525-528. 被引量:21
  • 2苏顺华,诸克军,黎金玲.软分类中最佳调和适应度函数的构建[J].系统工程理论方法应用,2006,15(3):241-246. 被引量:4
  • 3田涛,丁康.希尔伯特变换及其在故障诊断中的应用[J].振动与冲击,1996,15(2):23-27. 被引量:26
  • 4[1]裘亦楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社,2002.
  • 5[4]Holland J H.Adaptation in nature and artificial systems[M].The University of Michigan Press,1975,MIT PRESS,1992.
  • 6[6]Fred Aminzadeh.Applications of AI and soft computing for challenging problems in the oil industry[J].Journal of Petroleum Science and Engineering,2005,47:5-14.
  • 7Paya A, Esat I I,Badi M N M. Artificial neural network based fault diagnosis of rotating machinery using wavelet transforms as processor[J]. Mechanical Systems and Signal Processing, 1997, 11(5) : 751 -765.
  • 8Jack L B, Nandi A K, McCormick A C. Diagnosis of rolling element bearing faults using radial basis function networks[ J]. Applied Signal Processing, 1999(6) : 25 - 32.
  • 9Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2) : 121 - 167.
  • 10Vapnik V N. The Nature of Statistical Learning Theory [M]. New York:Spring-Verag, 1995.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部