期刊文献+

基于气温和DC-BP-NN的河西走廊月度ETo估算模型 被引量:5

Monthly Reference Crop Evapotranspiration Estimation Model Based on Air Temperature and DC-BP-NN in Hexi Corridor
下载PDF
导出
摘要 针对参考作物蒸散量(Reference crop evapotranspiration,ETo)估算模型中,标准估算模型——FAO PenmanMonteith(FAO-PM)模型需要充分的气象数据,而基于气温的估算模型精度不足的问题,参考FAO-PM模型结构,基于气温和月序数,融合分治法(Divide and conquer,DC)和误差反向传播神经网络(Back propagation neural network,BP-NN),提出了一种采用DC-BP-NN的月度ETo估算模型;以FAO-PM模型计算的ETo为标准,利用河西走廊酒泉气象站1958年1月—2013年9月的月度气象数据,将DC-BP-NN模型与其余6种基于气温的ETo估算模型(Blaney-Criddle模型、Hargreaves-Samani模型、2种改进的Hargreaves-Samani模型、BP-NN模型、BP-NN1模型)进行对比。结果表明,DC-BP-NN模型的估算精度(均方根误差5.99 mm/月,平均偏差0.99 mm/月,平均绝对百分误差7.18%,决定系数0.988 6)优于其余6种ETo估算模型,该模型可以用于河西走廊农田气象数据不充分条件下的月度ETo估算。 As the standard method for estimating reference crop evapotranspiration( ETo),FAO PenmanMonteith( FAO-PM) model incorporates both the thermodynamic aspect and the aerodynamic aspect of evapotranspiration. The model needs complete agricultural meteorological data to estimate ETo,which is considered to be a difficult task in many locations of Hexi Corridor. Meanwhile,the accuracy of the temperature-based models is insufficient. In order to solve these problems,a monthly ETo estimation model( DC-BP-NN) was proposed,which integrated air-temperature,divide and conquer( DC) method and back propagation neural network( BP-NN) with the structure of FAO-PM model. The model consisted of two BP-NN models: the radiation BP-NN model and the aerodynamic BP-NN model. In the experiments,the data was from Jiuquan Weather Station in Hexi Corridor. The reference standard was obtained by FAO-PM model. The results showed that DC-BP-NN model was superior to the other six ETo estimation models, including Blaney-Criddle model, Hargreaves-Samani model, two improved Hargreaves-Samani models, BP-NN model and BP-NN1 model( BP-NN model was based on air temperature and monthly ordinal number),with average root mean square error of 5. 99 mm / month,mean bias error of 0. 99 mm / month,mean absolute percentage error of 7. 18% and determination coefficient of0. 988 6. Therefore,the DC-BP-NN model can be used for estimating monthly ETo in Hexi Corridor withinsufficient meteorological data.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2015年第12期140-147,共8页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(61273329)
关键词 参考作物蒸散量 气温 月序数 分治法 神经网络 月度估算模型 Reference crop evapotranspiration Air temperature Monthly ordinal number Divide and conquer Neural network Monthly estimation model
  • 相关文献

参考文献29

  • 1Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-guidelincs for computing crop water requirements[ R]. Rome: FAO Irrigation and Drainage Paper 56, 1998, 300:6541.
  • 2Philip J R. Plant water relations-some physical aspects[J]. Annual Review of Plant Physiology, 1966, 17:245 -268.
  • 3康绍忠,熊运章,刘晓明.用彭曼—蒙特斯模式估算作物蒸腾量的研究[J].西北农业大学学报,1991,19(1):13-20. 被引量:24
  • 4甘肃省水利厅.2012年甘肃省水资源公报[R].兰州:甘肃省水利厅,2012:23-24.
  • 5赵玲玲,夏军,许崇育,王中根,苏磊,龙藏瑞.水文循环模拟中蒸散发估算方法综述[J].地理学报,2013,68(1):127-136. 被引量:42
  • 6Yang Dawen, Li Chong, Hu Heping, et al. Analysis of water resources variability in the Yellow River of China during the last half century using historical data[ J]. Water Resources Research, 2004, 40(6) :1 -12.
  • 7Blaney H F, Criddle W D. Determining water requirements in irrigated area from climatological irrigation data [ C ] // US Department of Agriculture, Soil Conservation Service, Technical Paper 96, 1950 : 1 - 48.
  • 8Hargreaves G H, Samani Z A. Reference crop evapotranspiration from temperature [ J]. Applied Engineering in Agriculture, 1985, 1(2) :96 -99.
  • 9Xu C Y, Singh V P. Evaluation and generalization of temperature-based methods for calculating evaporation [ J J. Hydrological Processes, 2001 , 15(2) :305 -319.
  • 10彭世彰,徐俊增.参考作物蒸发蒸腾量计算方法的应用比较[J].灌溉排水学报,2004,23(6):5-9. 被引量:119

二级参考文献166

共引文献611

同被引文献53

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部