摘要
针对参考作物蒸散量(Reference crop evapotranspiration,ETo)估算模型中,标准估算模型——FAO PenmanMonteith(FAO-PM)模型需要充分的气象数据,而基于气温的估算模型精度不足的问题,参考FAO-PM模型结构,基于气温和月序数,融合分治法(Divide and conquer,DC)和误差反向传播神经网络(Back propagation neural network,BP-NN),提出了一种采用DC-BP-NN的月度ETo估算模型;以FAO-PM模型计算的ETo为标准,利用河西走廊酒泉气象站1958年1月—2013年9月的月度气象数据,将DC-BP-NN模型与其余6种基于气温的ETo估算模型(Blaney-Criddle模型、Hargreaves-Samani模型、2种改进的Hargreaves-Samani模型、BP-NN模型、BP-NN1模型)进行对比。结果表明,DC-BP-NN模型的估算精度(均方根误差5.99 mm/月,平均偏差0.99 mm/月,平均绝对百分误差7.18%,决定系数0.988 6)优于其余6种ETo估算模型,该模型可以用于河西走廊农田气象数据不充分条件下的月度ETo估算。
As the standard method for estimating reference crop evapotranspiration( ETo),FAO PenmanMonteith( FAO-PM) model incorporates both the thermodynamic aspect and the aerodynamic aspect of evapotranspiration. The model needs complete agricultural meteorological data to estimate ETo,which is considered to be a difficult task in many locations of Hexi Corridor. Meanwhile,the accuracy of the temperature-based models is insufficient. In order to solve these problems,a monthly ETo estimation model( DC-BP-NN) was proposed,which integrated air-temperature,divide and conquer( DC) method and back propagation neural network( BP-NN) with the structure of FAO-PM model. The model consisted of two BP-NN models: the radiation BP-NN model and the aerodynamic BP-NN model. In the experiments,the data was from Jiuquan Weather Station in Hexi Corridor. The reference standard was obtained by FAO-PM model. The results showed that DC-BP-NN model was superior to the other six ETo estimation models, including Blaney-Criddle model, Hargreaves-Samani model, two improved Hargreaves-Samani models, BP-NN model and BP-NN1 model( BP-NN model was based on air temperature and monthly ordinal number),with average root mean square error of 5. 99 mm / month,mean bias error of 0. 99 mm / month,mean absolute percentage error of 7. 18% and determination coefficient of0. 988 6. Therefore,the DC-BP-NN model can be used for estimating monthly ETo in Hexi Corridor withinsufficient meteorological data.
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2015年第12期140-147,共8页
Transactions of the Chinese Society for Agricultural Machinery
基金
国家自然科学基金资助项目(61273329)
关键词
参考作物蒸散量
气温
月序数
分治法
神经网络
月度估算模型
Reference crop evapotranspiration
Air temperature
Monthly ordinal number
Divide and conquer
Neural network
Monthly estimation model