期刊文献+

带有前置泵的有机朗肯循环实验 被引量:3

Experiment on Organic Rankine Cycle Performance with Booster Pump
下载PDF
导出
摘要 针对基本有机朗肯循环(B-ORC)在运行时工质泵易发生气蚀,提出了带有前置泵的有机朗肯循环(BPORC),并建立了实验装置。采用不锈钢磁力泵作为前置泵,安装于工质泵与储液罐之间,用于提升工质泵入口压力,从而确保工质泵入口有足够的气蚀余量。采用三氟二氯乙烷(R123)作为循环工质,在140℃热源条件下进行实验,对比了B-ORC和BP-ORC系统运行的稳定性和高效性。实验结果表明,前置泵可有效解决工质泵气蚀问题,使得有机工质流量不发生显著偏离和剧烈波动,工质流量波动幅值从±22 kg/h下降至±2.1 kg/h。相同条件下BP-ORC膨胀机输出轴功增大,当工质泵频率f为7 Hz时,膨胀机最大轴功从2.11 k W提升至2.35 k W,增幅为11.4%。本实验中前置泵功耗为0.3 k W,当不考虑前置泵自身功耗时,系统输出净功和热效率都明显提升,最大热效率从5.78%升至6.16%;计入前置泵功耗时,系统最大热效率则降至5.27%。 Organic Rankine cycle( ORC) is a promising approach to utilize the low grade heat sources.For basic organic Rankine cycle( B-ORC), working fluid circulating pump is one of the main components with low efficiency and suffering cavitation problem. To improve the situation,organic Rankine cycle with booster pump( BP-ORC) was proposed,and an experimental setup was constructed.A stainless steel magnetic drive pump was used as booster pump which was installed between circulating pump and reservoir. Dichlorotrifluoroethane( R123) was selected as working fluid,and a scroll expander was used to produce shaft work. At the heat source temperature of 140℃,comparative experiment was organized to compare the stabilization and effectiveness between B-ORC and BP-ORC. The results showed that booster pump can overcome the cavitation of circulating pump effectively,resolve the deviation of working fluid mass flow rate obviously,and reduce the scale of oscillation of mass flow rate at the same time. The intension of oscillation was reduced from ± 22 kg / h to ± 2. 1 kg / h. The maximum shaft power of expander was raised from 2. 11 k W to 2. 35 k W when the frequency of circulating pump was 7 Hz. The power consumption of booster pump was about 0. 3 k W. Net thermal efficiency was raised from 5. 78% to6. 16% when the booster pump consuming power was ignored,while it was fallen to 5. 27% when the booster pump consuming power was considered. The results identified that the reasonable selection of booster pump is necessary.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2015年第12期385-390,396,共7页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金国际合作与交流资助项目(51210011) 中央高校基本科研业务费专项资金资助项目(2014XS49 2015QN15)
关键词 前置泵 气蚀 气蚀余量 稳定性 效率 有机朗肯循环 实验 Booster pump Cavitation Net positive suction head Stability Efficiency Organic Rankine cycle Experiment
  • 相关文献

参考文献26

  • 1Quoilin s, Aumann R, Grill A, et al. Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles [J]. Applied Energy, 2011, 88(6): 2183 -2190.
  • 2Zhou N J, Wang X Y, Chen Z, et al. Experimental study on organic Rankine cycle for waste heat recovery from low-temperature flue gas [J]. Energy, 2013, 55(1): 216 -225.
  • 3Xu J L, Liu C. Effect of the critical temperature of organic fluids on supercritical pressure organic Rankine cycles [ J]. Energy, 2013, 63(1) : 109 -122.
  • 4杨凯,张红光,张健,杨富斌,王震,范伯元.变工况柴油机余热回收系统中混合工质模拟研究[J].农业机械学报,2013,44(7):39-44. 被引量:11
  • 5张红光,张健,杨凯,赵光耀,刘昊,姚宝峰.柴油机全工况下抽气回热式有机朗肯循环系统分析[J].农业机械学报,2014,45(8):19-26. 被引量:5
  • 6涂鸣,李刚炎,胡剑.不同工况柴油机排气余热回收系统试验与仿真![J].农业机械学报,2014,45(2):1-5. 被引量:7
  • 7Zhang Y Q, Wu Y T, Xia G D, et al. Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine [ J]. Energy, 2014, 77:499 -508.
  • 8Hettiarachchia H D M, Golubovica M, Worek W M, et al. Optimum design criteria for an organic Rankine cycle using low- temperature geothermal heat sources [ J ]. Energy, 2007, 32 (9) : 1698 - 1706.
  • 9Guo T, Wang H X, Zhang S J. Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources [J]. Energy, 2011, 36(5):2639-2649.
  • 10Liu Q, Duan Y Y, Yang Z. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids [J]. Energy, 2013, 63(1): 123 -132.

二级参考文献72

  • 1牛宝联,张于峰.CO_2/R170混合物作为复叠式制冷系统低温环路制冷剂的性能[J].化工学报,2007,58(3):555-561. 被引量:9
  • 2ASHRAE HANDBOOK COMMITFEE. 2006 ASHRAE HANDBOOK/REFRIGERATION. USA: ASHRAE Inc, 2006.
  • 3Danfoss.工业制冷系统自动化控制应用手册.2007.
  • 4张兆顺.流体力学[M].北京:清华大学出版社,2001..
  • 5Sarkar J, Bhattacharyya Souvik, Gopal M. Ram Optimi- zation of a Transcritical CO2 Heat Pump Cycle for Simul- taneous Cooling and Heating Applications[ J]. Int J Re- frig., 2004,27(8) :830 -838.
  • 6Bhattacharyya Souvik, et al. Optimization of a CO2 - C3 Hs Cascade System for Refrigeration and Heating[ J ] Int J Refrig, 2005,28(8) :1284 - 1292.
  • 7Neksa P, Girotto S, Sehiefloe P. Commercial Refrigera- tion Using CO2 as Refrigerant:System Design and Exper- imental Results [ C ]. Proceeding of the 3rd il R : Gustav Lorentzen Conference on Natural Working Fluids. Oslo, 1998. 270 - 280.
  • 8蔡曾,龙天渝.流体力学泵与风机[M].北京:中国建筑工业出版社,1999.
  • 9Dolz V, Novella R, Gareia A, et al. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1 :study and analysis of the waste heat energy[ J ]. Applied Thermal Engineering,2012,36:269 -278.
  • 10Yu Guopeng, Shu Gequn, Tian Hua, et al. Simulation and thermodynamic analysis of a bottoming organic Rankine cycle (ORC) of diesel engine (DE) [ J]. Energy,2013,51:281 - 290.

共引文献26

同被引文献53

  • 1LIU Q, DUAN Y Y, YANG Z. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids[J]. Energy, 2013, 63: 123-132.
  • 2GHASEMI H, PACI M, TIZZANINI A, et al. Modeling and optimization of a binary geothermal power plant[J]. Energy, 2013, 50: 412-428.
  • 3WANG X D, ZHAO L, WANG J L, et al. Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa [J]. Solar Energy, 2010, 84 (3): 353-364.
  • 4AL-SULAIMAN F A. Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles[J]. Energy Conversion and Management, 2014, 77: 441-449.
  • 5SALEH B, KOGLBAUER G, WENDLAND M, et al. Working fluids for low-temperature organic Rankine cycles[J]. Energy, 2007, 32: 1210-1221.
  • 6BELL I H, LEMORT V, GROLL E A, et al. Liquid flooded compression and expansion in scroll machines - Part Ⅱ: Experimental testing and model validation[J] . International Journal of Refrigeration, 2012, 35: 1890-1900.
  • 7BRACCO R, CLEMENTE S, MICHELI D, et al. Experimental tests and modelization of a domestic-scale ORC (organic Rankine cycle) [J]. Energy, 2013, 58: 107-116.
  • 8LEE Y R, KUN C R, LIU C H, et al. Dynamic response of a 50 kW organic Rankine cycle system in association with evaporators[J]. Energies, 2014, 7: 2436-2448.
  • 9CHANG J C, HUNG T C, HE Y L, et al. Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander[J]. Applied Energy, 2015, 155: 150-159.
  • 10YANG X F, XU J L, MIAO Z, et al. Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques[J]. Energy, 2015, 90: 864-878.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部