期刊文献+

过2点与直线相切的圆的分析与图解

Analytical Proof and Illustrations for Circles Passing Through Two Given Points and Tangent to A Given Line
下载PDF
导出
摘要 当已知3圆中的2圆退化成点且另1圆退化成直线时,得到阿波罗尼奥斯问题(Apollonius'Problem)的一种特殊情况。在这个前提下,根据已知2点连线与已知直线的位置关系,过已知2点作与已知直线相切的圆,共有3种情况。当已知2点连线与已知直线斜交时,过已知2点可作2圆与已知直线相切,根据近代欧氏几何中的反演理论,提出了一种作出这2圆的图解方法,并对作图依据进行了分析与论证。 A special condition of Apollonius′Problem is that two of three circles are degenerated into points and another circle is degenerated into line. According to the position relation between the line passing through two given points and the given line, There are three kinds of results when drawing circles passing through two given points and tangent to a given straight line.When the line passing through two given points is oblique to the given line, there are two such circles passing through two given points and tangent to a given line, a graphic method drawing such two circles is provided based on inversive theory of Euclidean geometry.
出处 《成都工业学院学报》 2015年第4期34-36,共3页 Journal of Chengdu Technological University
关键词 欧氏几何 图解方法 反演理论 阿波罗尼奥斯问题 Euclidean geometry graphic method inversive theory Apollonius′Problem
  • 相关文献

参考文献3

  • 1汪晓勤,张小明.圆之吻阿波罗尼斯问题的历史[J].数学传播,2006,30(2):40-50.
  • 2GISCH D, RIBANDO J M. ApoUonius'problem: a study of solutions and their connections [ J ]. American Journal of Undergraduate Research, 2004,3(1):15-25.
  • 3约翰逊 R A.近代欧氏几何学[M].单墫,译.上海:上海教育出版社,1999:225-226.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部