期刊文献+

Rosenau-Kawahara方程的空间加权C-N差分格式

A Weighted C-N Conservative Finite Difference Scheme for Rosenau-Kawahara Equation
下载PDF
导出
摘要 对Rosenau-Kawahara方程的初边值问题进行数值研究,利用LAX加权差分格式的构造思想,在保持二阶理论精度的情况下,对空间层引入加权系数,提出1个两层非线性空间加权差分格式,格式合理地模拟了问题的2个守恒性质,得到差分解的先验估计,并利用离散泛函分析方法分析格式的收敛性与无条件稳定性。数值实验表明:该方法是可靠的,适当调整加权系数可以大幅提高计算精度。 In this paper, a conservative Crank-Nicolson finite difference with weight coefficient is proposed by LAX scheme.The scheme has an advantage that it preserves some invariant properties of the original differential equation.It is shown that the finite difference scheme is convergent with second-order and unconditionally stable by discrete functional analysis method.Numerical experiment also shows that appropriate adjustments to the weighted parameter can significantly improve the computational accuracy.
出处 《成都工业学院学报》 2015年第4期57-60,共4页 Journal of Chengdu Technological University
基金 四川省应用基础研究项目"基于Gamma相机图像的放射源三维反演建模及重建算法研究"(2013JY0096) 西华大学研究生创新基金"非线性Rosenau-Kawahara方程的数值方法研究"(ycjj2014033)
关键词 Rosenau-Kawahara 方程 LAX 加权 守恒 收敛性 稳定性 Rosenau-Kawahara equation LAX weighted conservation convergence stability
  • 相关文献

参考文献9

  • 1[ ROSENAU P. A quasi-eontinuous description of a nonlinear transmission line[J]. Physica Scripta,1986,34(6B) :827 -829.
  • 2ROSENAU P. Dynamics of dense discrete systems:high order effects: general and mathematieal Physics[ J ]. Progress of Theoretical Physics,1988(79) :1028 - 1042.
  • 3ZUO J M. Solitons and periodic solutions for the Rosenau-KdV and Rosenau-Kawahara equations [ J ]. Applied Mathematics and Computation,2009,215 ( 2 ) : 835 - 840.
  • 4BISWAS A, TRIKI H, LABIDI M. Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity [ J ]. Physics of Wave Phenomena,2011,19 ( 1 ) :24 - 29.
  • 5胡劲松,王玉兰,王正华.广义Rosenau-Kawahara方程的孤波解及其守恒律[J].西华大学学报(自然科学版),2013,32(5):26-28. 被引量:8
  • 6HU J, XU Y, HU B, et al. Two conservative difference schemes for Rosenau-Kawahara equation. Advances in Mathematical Physics, 2014,10( 1 ) :396 - 409.
  • 7陈涛,胡劲松.求解广义Rosenau-Kawahara方程的一个守恒差分格式[J].西北师范大学学报(自然科学版),2015,51(5):18-21. 被引量:3
  • 8陈涛,胡劲松,郑克龙.Rosenau-Kawahara方程的一个新的守恒差分算法[J].成都工业学院学报,2015,18(2):58-60. 被引量:1
  • 9ZHOU Y. Application of discrete functional analysis to the finite difference method [ M ]. Beijing: International Academic Publishers, 1991.

二级参考文献17

  • 1王廷春,张鲁明.求解广义正则长波方程的守恒差分格式[J].应用数学学报,2006,29(6):1091-1098. 被引量:14
  • 2BISWAS A, TRIKI H, LABIDI M. Bright and dark solitons of the Rosenan-Kawahara equation with power law nonlinearity [ J ]. Physics of Wave Phenomena,2011,19 ( 1 ) :24 - 29.
  • 3ZUO J. Solitons and periodic solutions for the Rosenau-KdV and Rosenau-Kawahara equations[ J ]. Applied Mathematics and Computation, 21309,215(2) :835 -840.
  • 4LABIDI M, BISWAS A. Application of He Is principles to Rosenau- Kawahara equation [ J ]. Mathematics in Engineering, Science and Aerospace MESA,2009,2(2) :183 -197.
  • 5HU J, XU Y, HU B, et al. Two conservative difference schemes for Rosenau-Kawahara equation[ J]. Advances in Mathematical Physics, 2014:217393.
  • 6ZHOU Y L Application d" discrete functional analysis to the finite difference trethcxts[ M]. Beijing:Intemational Academic Pubhshers,1991.
  • 7ZUO J. Solitons and periodic solutions for the Rosenau KdV and Rosenau-Kawahara Equations[J].Applied Mathematics and Computation, 2009, 215(2): 835.
  • 8LABIDI M, BISWAS A. Application of He's principles to Rosenau-Kawahara equation E J 1. Mathematics in Engineering, Science and Aerospace, 2009, 2(2):183.
  • 9BISWAS A, TRIKI H, LABIDI M. Bright and dark solitons of the Rosenau? Kawahara equation with power law nonlinearity[J]. Physics of Wave Phenomena, 2011, 19(1): 24.
  • 10HU J, XU Y, HU B, et al. Two conservative difference schemes for Rosenau-Kawahara equation [J]. Advances in Mathematical Physics, 2014 (2014), Article ID 217393, 11 pages.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部