期刊文献+

一种改进的两步时域相位去包裹算法 被引量:1

An improved two-step temporal phase unwrapping algorithm
原文传递
导出
摘要 针对时域相位去包裹方法在三维形貌测量时存在采集图像幅数多、数据量大和处理时间长等问题,提出了一种改进的两步时域相位去包裹算法。首先,增加中间灵敏度投影条纹,将不同灵敏度光栅条纹投射到待测物体表面,由CCD相机采集;再通过不同灵敏度级联,得到最终灵敏度系数G值较大的去包裹相位数据。推导了两步时域相位去包裹算法的初始相位条件。并进行了实际测量。结果表明,本文方法可实现高灵敏度三维形貌测量,测量结果精度更高。 Servin et al proposed a 2-step temporal phase unwrapping algorithm,which only needs 2extreme phase-maps to achieve exactly the same results as the standard temporal unwrapping method.But this method also has some problems.In order to optimize the range of sensitivity coefficient Gand improve the measurement accuracy,an improved temporal phase unwrapping algorithm is proposed in this paper,which is an extension of Servin′s method.First,we add an intermediate sensitivity fringe pattern,project the fringe patterns with different sensitivities onto the object surface,and then collect the deformed fringe patterns with a CCD camera.Then we obtain the unwrapped phase with larger sensitivity coefficient Gby cascading the sensitivity coefficients.We derive the initial phase conditions of the 2-step temporal phase unwrapping algorithm.Finally,the experimental evaluation is conducted to prove the validity of the proposed method.The results are compared with those of the method in Ref.[21].The experimental results show that this method can achieve high sensitivity,and the results are more accurate.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第11期2187-2192,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(11172054 11472070)资助项目
关键词 时域相位去包裹 灵敏度 相位测量轮廓术(PMP) temporal phase unwrapping sensitivity phase measuring profilometry(PMP)
  • 相关文献

参考文献22

  • 1Lei Z K, Wang C, Zhou C L. Multi-frequency inverse- phase fringe projection profilometry for nonlinear phase error compensation[J]. Optics and Lasers in Engineer- ing, 2015,66 :249-257.
  • 2郑素珍,曹益平.基于二维经验模态分解的三维面形测量[J].光电子.激光,2013,24(10):1967-1971. 被引量:6
  • 3Liu T C,Zhou C L,Si S C,et al. Improved differential 3D shape retrieval [J]. Optics and Lasers in Engineering, 2015,73 : 143-149.
  • 4周灿林,司书春,李辉,雷振坤.无相位去包裹的微分法三维形貌测量[J].光电子.激光,2015,26(8):1549-1552. 被引量:3
  • 5de Souza J, Oliveira M, dos Santos P. Branch-cut algo- rithm for optical phase unwrapping[J]. Optics Letters. 2015,40(15) : 3456-3459.
  • 6Rivera M,Hernandez-Lopez F J,Gonzalez A. Phase unwr- apping by accumulation of residual maps[J]. Optics and Lasers in Engineering,2015,64:51-58.
  • 7Zhou C,Liu T,Si S,et al. An improved stair phase enco- ding method for absolute phase retrieval[J]. Optics and Lasers in Engineering, 2015,66 : 269-278.
  • 8Kamilov U S, Papadopoulos I N, Shoreh M H, et al. Iso- tropic inverse-problem approach for two-dimensional phase unwrapping[J]. JOSA A,2015,32(6) : 1092-1100.
  • 9Saldner H O, Huntley J M. Temporal phase unwrapping: application to surface profiling of discontinuous object [J]. Appl. Opt. 1997,36(13) ; 2770-2775.
  • 10Li B, Ma S, Zhai Y. Fast temporal phase unwrapping method for the fringe reflection technique based on the orthogonal grid fringes[J], Applied optics,2015,54(20) : 6282-6290.

二级参考文献30

  • 1郑素珍,陈文静,苏显渝.自适应窗口傅里叶变换三维面形检测技术[J].光电工程,2005,32(9):51-54. 被引量:12
  • 2García-Isáis C, Ochoa N A. One shot profilometry using phas e partitions[J].Optics and Lasers in Engineering,2015,68:111-120.
  • 3Fu Y,Wang Z,Li B,et al.Three-dimensional shape measureme nt of complex surfaces based on defocusing and phase-shifting coding[J].Journal of Modern Optics,2015,1-12.
  • 4Zheng D,Da F.Phase coding method for absolute phase retrieval with a large number of codewords[J].Optics express,2012,20(22):24139-24150.
  • 5Zhou C,Liu T,Si S,et al.An improved stair phase encoding method for absolute phase retrieval[J].Optics and Lasers in Engineering,2015,66:269-278.
  • 6Lei Z K, Wang C, Zhou C L.Multi-frequency inverse-phase frin ge projection profilometry for nonlinear phase error compensation[J].Optics and Lasers in Engineering,2015,66:249-257.
  • 7ZHONG Kai,LI Zhong-wei,SHI Yu-sheng,et al.Fast pha-se meas urement profilometry for arbitrary shape objects without phase unwrapping[J].Optics and Lasers in Engineering,2013, 51(11):1213-1222.
  • 8Lohry W, Chen V, Zhang S.Absolute three-dimensional shape measu rement using coded fringe patterns without phase unwrapping or projector calibration[J].Optics express,2014,22(2):1287-1301.
  • 9Téllez-Qui Aéones,Malacara-Doblado D.Phase recovering without phase unwrapping in phase-shifting interferometry by cubic and average interpolation[J].Applied optics,2012,51(9):1257-1265.
  • 10Lara-Cortez F, Meneses-Fabian C, Rodriguez- Zurita G.Pfaff equation and Fourier analysis to phase extraction from an interferogram with carrier frequency[J].J.Phys.Conf.Ser.274,IOP,2011,1-6.

共引文献7

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部