期刊文献+

基于主题模型的科技监测方法及应用研究 被引量:5

Method of Science and Technology Monitoring Based on Topic Model and Its application
下载PDF
导出
摘要 科技监测方法与技术可以为科学技术活动的动态监测、分析及评估提供有力支持。随着科技创新环境与关联要素的日益多元化和动态复杂化,如何从海量文献中找到科技创新突破口、发掘潜在研究价值,成为科技监测发挥重要作用的基础。针对现有科技监测方法中存在的主题表达简单与文本加工方法受限于技术处理制约等问题,本文将主题模型方法引入到科技监测中,提出基于主题模型的科技监测的构建思路与结构。并深入探索该方法应用的三个核心构成——主题强度度量、主题演化判定、衍生应用的内涵与模式等。最后,以科技报告为数据来源、以“微波功率放大器”为研究领域,进行实验研究与结果分析,实验结果显示了所提方法的应用的可解释性与有效性。 Science and technology monitoring can provide strong support for dynamic monitoring, analysis and evaluation of scientific and technical activities. With the increasingly diversity and dynamic eomplexity of the innovation environment and elements of technology, how to find a breakthrough in technological innovation and explore the potential value of research, become the basis for science and technology. These problems of science and technology monitoring, such as topic express simplify, the method of text processing is limited by the technical processing constraints and other issues, so this paper introduces topic model to the science and technology monitoring, and proposes the ideas and structure of technology monitoring methods based on the topic model. Then core components of the application of the method are deeply explored the connotation and mode of the topic intensity, the topic evolution and the derivative applications. Finally, taking technology report as the source of data and " the microwave power amplifier" as the field of study, this paper carries on experimental study and analysis of results, and the experimental results show that the application of the proposed method is interpretable and effeetive.
出处 《情报学报》 CSSCI 北大核心 2015年第8期854-865,共12页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金“新研究领域科学文献传播网络生长及对传播效果影响研究”(No:71373124) 中央髙校基本科研业务费专项资金资助项目“面向科技创新的Web2.0信息资源深度整合研究”(No:30920130121007)研究成果之一
关键词 科技监测 主题模型 主题强度 主题演化 衍生应用 science and technology monitoring, topic model, topic intensity, topic evolution, derivative applications
  • 相关文献

参考文献26

  • 1王曰芬,王雪芬,杨小晓.基于社会网络的科技咨询专家库的构建方案与流程设计[J].情报学报,2012,31(2):116-125. 被引量:12
  • 2朱东华,袁军鹏.基于数据挖掘的科技监测方法研究[J].管理工程学报,2004,18(4):135-139. 被引量:59
  • 3Kontostathis A,Galitsky L,Pottenger W M,et al.A survey of emerging trend detection in textual data mining[J].Survey of Text Mining,2003:185-224.
  • 4Porter A L,Cunningham S W.Tech Mining:Exploiting New Technologies for Competitive Advantage[M].New York Wiley,2005.
  • 5王光宏,蒋平.数据挖掘综述[J].同济大学学报(自然科学版),2004,32(2):246-252. 被引量:261
  • 6Steyvers M,Griffiths T.Probabilistic Topic Models:A Road to Meaning[M].Handbook of Latent Semantic Analysis,Lawrence Erlbaum,2007.
  • 7Deerwester S,Dumais S,Landauer T,et al.Indexing by latent semantic analysis[J].Journal of the American Society of Information Science,1990,41(6):391-407.
  • 8Hofmann T.Unsupervised learning byprobabilistic latent semantic analysis[J].Machine Learing,2001(42):177-196.
  • 9David M B,Andrew Y N,Michael I J.Latent dirichlet allocation[J].The Journal of Machine Learning Research,2003(03):993-1022.
  • 10张晨逸,孙建伶,丁轶群.基于MB-LDA模型的微博主题挖掘[J].计算机研究与发展,2011,48(10):1795-1802. 被引量:166

二级参考文献153

共引文献1076

同被引文献99

引证文献5

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部