期刊文献+

锁定重建接骨板治疗髋臼横行伴后壁骨折的生物力学研究

Biomechanical Study of Acetabunlum Transverse and Posterior Wall Fractures Treated by Internal Fixation with Locking Reconstruction Plate
下载PDF
导出
摘要 目的研究髋臼横行伴后壁骨折3种方式内固定的稳定性。方法 9个完整骨盆的18个髋臼标本根据随机数字法分为3组,建立髋臼横行伴后壁骨折模型,行3种方式内固定:A组:后柱重建接骨板结合后壁2枚拉力螺钉固定;B组:后柱锁定重建接骨板固定;C组:后柱重建接骨板结合后壁2枚拉力螺钉、前柱半螺纹松质骨拉力螺钉固定。于单足站立中立位进行轴向加载,观察3组能承担的最大负载和加载至2 200 N时后壁骨折块的位移。结果A、B、C组能承担的最大负载分别为(2 243.74±116.36)N、(2 769.05±131.42)N及(2 832.87±137.93)N,三组在加载至2 200 N时后壁骨折块的位移分别为(2.15±0.26)mm、(0.45±0.05)mm及(0.53±0.07)mm。B、C两组差异无统计学意义(P>0.05)。B、C两组数据与A组比较,差异均有统计学意义(P<0.05,P<0.01)。结论锁定重建接骨板固定髋臼横行伴后壁骨折固定可靠,能够满足患者早期功能锻炼的要求,具有较大临床应用价值。 Objective To evaluate the stability of 3 different internal fixation methods for transverse and posterior wall fractures of the acetabulum. Methods Seighteen acetabula of 9 whole pelvises were divided into 3 groups randomly. Models of transverse and posterior wall fraeturesof aeetabulum were established and then fixed with one of following three internal fixation methods: ( Group A ) posterior column locking reconstruction plate group, ( Group B ) posterior column common reconstruction plate withposterior wall 2 lag screwsgroup , ( Group C) anterior column lag screw and posterior column common reconstruction plate with posterior wall2 lag screws group, biomechanical tests are conducted in a single leg stance tomeasurethe maximal loads in the three groups and the displacements of the posterior wall fractures when the stress were loaded to 2 200 N on the three groups. Results The maximal loads in Groups A,B,C were as follows: (2243.74 ± 116.36) N,(2769.05 ± 131.42) N, (2832.87 ± 137.93 ) N. When the stress was loaded to 2 200 N on the three groupS, the displacements of the posterior wall fractures were as foUows:(2.15±0.26) ram, (0.45±0.05) mm, (0.53 ±0. 07) ram. We found there was no significant difference between the Group B and the Group C ( P 〉 0.05 ). There was significant difference between Groups B, C and Groups A, ( P 〈 O. 05,P 〈 0.01 ). Conclusion For the acetabular transverse and posterior wall fractures, locking reconstruction plate internal fixation methods can provide sufficient stability to satisfy the requirements of physical training at early stage, which gives great clinical values.
出处 《实用骨科杂志》 2015年第12期1088-1092,共5页 Journal of Practical Orthopaedics
基金 唐山市科学技术研究与发展指导计划项目(12140210A-5)
关键词 髋臼 骨折 锁定重建接骨板 内固定 生物力学 acetabulum fracture locking reconstruction plate internal fixation biomechanics
  • 相关文献

参考文献13

  • 1Keel M J, Ecker TM, Siebenrock KA, et al. Rationales for the Bernese approaches in acelabular surgery [ J ]. Eur J Trauma EmergSurg,2012,38(5) :459-498.
  • 2Gao H, Luo CF, Hu CF,et al. Percutaneous scow fixa- tion of acetabular fractl~res with 2D fluoroscopv-b~cd computerized navigation[J].Arch G~thopTrauma Surg, 2010,130(9) :1177- 1183.
  • 3Olson SA, Bay BK, Pollak AN, et al. The effect of varia- ble size posterior wall acetabular fractures on contact charac-teristics of the hip join [ J ]. J OrthopTrauma, 1996,10(6) :395-402.
  • 4Olson SA, Bay BK, Chapman MW, et al. Biomechanical consequences of fracture and repair of the posterior wall of the acetabulum [ J ]. J Bone Joint Surg (Am), 1995, 77(8) :1184-1192.
  • 5陈光兴,杨柳,李恺,王文斌,杨滨,张焱,何锐,王志军,余宾宁,姜哲,张肖莎.基于中国可视人体数据集构建髋关节应力分析三维有限元模型[J].第三军医大学学报,2009,31(12):1193-1197. 被引量:11
  • 6Chegini S, Beck M, Ferguson SJ. The effects of impinge- ment and dysplasia on stress distributions in the hip joint during sitting and walking:a finite element analy- sis[ J]. J Orthop Res ,2009,27 (2) : 195-201.
  • 7Gardner MJ, Brophy RH, Campbell D, et al. The me- chanical behavior of locking compression plates com- pared with dynamic compression plates in a cadaver ra- dius model [ J ]. J Orth Trauma,2005,19 (9) :597-603.
  • 8fractures. The scientific basis of biological internal fixa- tion:choosing a new balance between stability and biolo- gy[J]. J Bone Joint Surg Br,2002,84(8) :1093-1110.
  • 9Bay BK, Hamel A J, Olson SA, et al. Statically equiva- lent load and support conditions produce different hip joint contact pressures and periacetabularstrains [ J ]. J Biomech, 1997,30 (2) : 193-196.
  • 10Olson SA, Bay BK, Hamel A. Biomechanics of the hip joint and the effects of fracture of the acetabulum[ J]. Clin Orthop Relat Res,1997(339) :92-104.

二级参考文献14

  • 1Macirowski T,Tepic S,Mann R W.Cartilage stresses in the human hip joint[J].J Biomech Eng,1994,116(1):10-18.
  • 2Von-Eisenhart R,Adam C,Steinlechner M,et al.Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint[J].J Orthop Res,1999,17(4):532-539.
  • 3Greenwald A S,O' Connor J J.The transmission of load through the human hip joint[J].J Biomech,1971,4(6):507 -528.
  • 4Rushfeldt P D,Mann R W,Harris W H.Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum.II Instrumented endoprosthesis measurement of articular surface pressure distribution[J].J Biomech,1981,14(5):315-323.
  • 5Brown T D,Shaw D T.In vitro contact stress distributions in the natural human hip[J].J Biomech,1983,16(6):373 -384.
  • 6Hodge W A,Fijan R S,Carlson K L,et al.Contact pressures in the human hip joint measured in vivo[J].Proc Natl Acad Sci U S A,1986,83(9):2879-2883.
  • 7Genda E,Iwasaki N,Li G,el al.Normal hip joint contact pressure distribution in single-leg standing--effect of gender and anatomic parameters[J].J Biomech,2001,34(7):895 -905.
  • 8Mavcic B,Pompe B,Antolic V,et al.Mathematical estimation of stress distribution in normal and dysplastic human hips[J].J Orthop Res,2002,20(5):1025-1030.
  • 9Anderson A E,Ellis B J,Maas S A,et al.Validation of finite element predictions of cartilage contact pressure in the human hip joint[J].J Biomech Eng,2008,130(5):051008.
  • 10Konrath G A,Hamel A J,Olson S A,et al.The role of the acetabular labrum and the transverse acetabular ligament in load transmission in the hip[J].J Bone Joint Surg Am,1998,80(12):1781 -1788.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部