期刊文献+

双分数跳-扩散环境下的可转换债券定价 被引量:2

Convertible Bonds Pricing in Bifractional Jump-diffusion Environment
下载PDF
导出
摘要 可转换债券是一种兼具债券和期权特性的混合型高级金融衍生产品,其合理定价对发行人和投资者都具有重要的现实意义。在考虑企业市场价值波动和利率波动的基础上,假定股票价格遵循双分数Brown运动及跳过程驱动的随机微分方程,利率满足Vasicek模型,建立了双分数跳-扩散环境下的金融市场数学模型,利用双分数布朗运动的随机分析理论和保险精算方法,讨论了可转换债券定价问题,得到了双分数跳-扩散环境下的可转换债券定价公式,在现有研究的基础上对可转换债券定价公式进行了进一步的研究和推广,使模型更加贴近实际金融市场。 Convertible bond is a hybrid advanced financial derivatives with both features of bonds and options, and the reasonable pricing have important practical significance to issuers and investors. In this paper, on the basis of considering the volatility of enterprise market value and interest rates, assuming that stock price follows stochastic differential equations of bifractional Brownian motion and jumping process-driven, and the interest rate satisfies Vasicek model, the mathematical model of the financial market in the bifractional jump-diffusion environment is built. Using the stochastic analysis theory of bifractional Brownian motion and actuarial methods, the pricing problem of convertible bond is discussed, and the convertible bond pricing formula in bifractional jump-diffusion environment is obtained. On the basis of existing research the further research and promotion on convertible bonds pricing formula is done, so as to make the model more close to the actual finan- cial markets.
出处 《四川理工学院学报(自然科学版)》 CAS 2015年第6期92-96,共5页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 陕西省教育厅自然科学专项基金(12JK0862) 陕西省自然科学基础研究计划资助项目(2015JM1034)
关键词 双分数跳-扩散过程 可转换债券 保险精算 随机利率 bifractional jump-diffusion process convertible bond actuarial science stochastic interest rate
  • 相关文献

参考文献11

二级参考文献40

  • 1赵佃立.分数布朗运动环境下欧式幂期权的定价[J].经济数学,2007,24(1):22-26. 被引量:27
  • 2Hu Y,Ksendal B.Fractions White Noise Calculus and Application to Finance[J].Infinite Dimensional Analysis,Quantum Probability and Related Topics,2003,6:1 -32.
  • 3Necula C.Option Pricing in a Fractional Brownian Motion Environment[J].Pure Mathematics,2002,2(1):63 -68.
  • 4Li R H,Meng H B,Dai Y H.The Valuation of Compound Options on Jump -diffusions with Time Dependent Parameters[J].IEEE,2005,2:1290-1294.
  • 5Bladt M T,Rydberg H.An Actuarial Approach to Option Pricing Under the Physical Measure and With Out Market Assumption[J].Insurance:Mathematical and Economics,1998,22 (1):65 -73.
  • 6方兆本,缪柏其.随机过程[M].北京:科学出版社,2004:15-20.
  • 7Black F, Scholes M. The pricing of options and corporate liabilities[ J ]. Journal of Political Economics, 1973,81 (4) : 637 - 654.
  • 8Eberlein E, Jawd I. On the range of option prices [ J ]. Finance and Stochastics, 1997,1 : 131 - 140.
  • 9Merton R C. Applications of option-pricing theory: twenty- five years later [ J ]. American Economic Review, 1998, 6 (3) :323 - 349.
  • 10Mogens B, Rydberg T H. An actuarial approach to option pricing under the physical measure and without market assumptions [J ]. Insurance : Mathematlcs and Economics, 1998,22(1):65-73.

共引文献27

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部