期刊文献+

固阀塔板上密集鼓泡区气泡的运动行为特征 被引量:2

Bubble Movement Behavior in Dense Bubbling Zone of Fixed Valve Tray Plate
下载PDF
导出
摘要 利用双头电导探针测定了固阀塔板上密集鼓泡区气泡的运动速度,考察了密集鼓泡区不同轴向高度的气泡速度分布规律及其分形特征,分析了塔板上密集鼓泡区的气泡运动行为。研究结果表明:不同轴向高度处气泡速度沿同方向的分布具有相似性,近塔中心区域气泡速度变化平缓,呈弱双峰分布;塔板上气泡速度分布具有分形特征,分形维数为1.04~1.25,且随轴向高度的增加均先减小后增大;深层鼓泡区内气泡速度分布的分形维数可以较好地表征气泡运动的湍动强度,两者之间存在线性关系,气泡流湍动强度及分形维数与泡沫层高度间存在指数函数关系。 The bubble velocity in dense bubbling zone of the fixed valve tray plate was measured by the double-sensor conductivity probe.The fractal characteristics and distribution of bubble velocity in different vertical heights,as well as the behavior of bubble movement in different foam zones,were also investigated.The results showed that the distribution of bubble movement in different vertical heights along the same direction was similar.The change of bubble velocity showed a weak double peak shape,and was not fluctuant near the tower center.The bubble velocity distribution on the tray plate was of fractal characteristics with a fractal dimension ranged from 1.04 to 1.25,which reduced at first,and then increased along the vertical height.In the deep foam zone,the turbulent intensity of the bubble motion could be characterized very well by the fractal dimension of bubble velocity distribution,which showed the linear relation between them.There existed an exponential function relationship between turbulent intensity,fractal dimension of bubble flow and the height of foam.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期742-749,共8页 Journal of East China University of Science and Technology
基金 国家高技术研究发展(863)计划(2012AA053101)
关键词 固阀塔板 密集鼓泡 气泡速度 分形维数 湍动强度 fixed valve tray plate dense bubbling bubble velocity fractal dimension turbulent intensity
  • 相关文献

参考文献23

  • 1大卫·阿兹贝尔.化学工程中的两相流[M].北京:化学工业出版社,1987..
  • 2SokoIichin A, Eigenberger G. Applicability of the standard k-e turbulence model to the dynamic simulation of bubble col- umns: Part I. Detailed numerical simulations[J]. Chemical Engineering Science, 1999, 54(13) : 2273-2284.
  • 3Michael C G, Stefan R, Johannes G K. Coalescence and break-up in bubble columns: Euler-Lagrange simulations using a stochastic approach[J]. Chemic Ingenieur Technik, 2013, 85(7): 1118-1130.
  • 4Liu Weidong, Clark N N. Relationships between distribu- tions of chord lengths and distributions of bubble sizes inclu- ding their statistical parameters[J]. International Journal of Multiphase Flow, 1995, 21(6) : 1073-1089.
  • 5Wu Yuanxin, Ong B C, AI Dahhan M H. Predictions of radial gas holdup profiles in bubble column reactors [J]. Chemical Engineering Science, 2001, 56(3) : 1207- 1210.
  • 6Farzpourmachiani A, Shams M, Shadaram A, et al. Euleri- an-Lagrangian 3-D simulations of unsteady two-phase gas-liq- uid flow in a rectangular column by considering bubble inter- actions[J]. International Journal of Non-linear Mechanics,2011, 46(8): 1049-1056.
  • 7Shawaqfeh A T. Gas holdup and liquid axial dispersion under slug flow conditions in gas/liquid bubble column[J]. Chemi- cal Engineering and Processing, 2003, 42(10): 767-775.
  • 8Ferrante A, Elghohashi S. On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with micro-buhhles[J]. Journal of Fluid Mechan- ics, 2004, 503: 345-355.
  • 9Serizawa A, Michiyoshi I. Void fraction and pressure-drop in liquid-metal two-phase flow[J]. Journal of Nuclear Science and Technology, 1973, 10(7): 435-445.
  • 10Hilgert W, Hofnlann H. Characterization of gas-phase flow in bubble-columns at low gas velocities with the aid of an ultrasonic doppler [J]. Chemic Ingenieur Technik, 1986, 58 (3) : 228-229.

二级参考文献25

  • 1张进明,吕砚山.微机化气泡参数自动测量系统[J].北京化工学院学报,1990,17(2):60-65. 被引量:1
  • 2陈凤,彭耀,宋耀祖,陈民.电场作用下冷态单气泡形成过程[J].化工学报,2007,58(7):1706-1712. 被引量:5
  • 3Rabiger N, Vogelpohl A. Bubble formation in stagnant and flowing Newtonian liquids. German Chemical Engineering, 1982, 5:314-323
  • 4Miyahara T, Haga N, Takahashi T. Bubble formation from an orifice at high gas flow rates. International Chemical Engineering, 1983, 23:524-531
  • 5Ozawa Y, Mori K. Effect of physical properties of gas and liquid on bubbling-jetting phenomena in gas injection into liquid. Transactions of the Iron and Steel Institute of Japan, 1986, 26:291-297
  • 6Thorat B N, Shevade A V, Joshi J B, et al. Effect of sparger design and height to diameter ratio on fractional gas hold-up in bubble columns. Trans. IChem: PartA, 1998, 76, 823 834
  • 7Idogawa K, Ikeda K, Fukuda T. Formation and flow of gas bubbles in a pressurized bubble column with a single orifice or nozzle gas distributor. Chemical Engineering Communication, 1987, 59:202-212
  • 8Lei Zhang, Masahiro Shoji. Aperiodic bubble formation from a submerged orifice. Chemical Engineering Science, 2001, 56:5371-5381
  • 9Estelle Iacona, Cila Herman, Shinan Chang, Zan Liu. Electric field effect on bubble detachment in reduced gravity environment. Experimental Thermal and Fluid Science, 2006, 31:121-126
  • 10Nahra H K, Kamotani Y. Bubble formation from wall orifice in liquid cross-flow under low gravity. Chemical Engineering Science, 2000, 55:4653-4665

共引文献54

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部