期刊文献+

大数据时代的灾难信息管理 被引量:6

Big data meets the needs of disaster information management
下载PDF
导出
摘要 灾难信息管理旨在利用信息技术有效地应对和避免自然灾害等紧急事件给社会和民众带来的财产损失和生命威胁。在大数据环境下(数据量大,形式复杂,实时性强),灾难信息系统的发展在国际社会尤其是欧美发达国家得到了极大的重视和推动,但国内目前在相关领域的研究相对较少。首先从数据角度分析灾难信息管理中海量复杂数据的特殊性以及这些数据在处理过程中的难点;接着从灾难管理中信息交流的需求和大数据的作用入手,系统总结了灾难信息管理的关键要素。针对数据及信息交流存在的问题,提出基于大数据技术的灾难信息管理系统,并通过具体的实例进行了详细的分析。最后,讨论了大数据时代的灾难信息管理的潜在研究方向和思路。 Disaster information management is used for the process of using information technology to minimize the social and physical impact of disasters and reduce community vulnerability to the consequences of disasters. Firstly,the information exchange and sharing needs in disaster management are discussed to identify the data characteristics as well as the related challenges in data processing and analysis. Then,the key elements in data-driven disaster information management are summarized. To address the existing challenges,the general system architecture for data-driven disaster information management systems is presented by leveraging big data technologies. Case studies are analyzed to highlight the key system components in achieving better information delivery and sharing. Finally,research directions are pointed out.
作者 黄越 李涛
出处 《南京邮电大学学报(自然科学版)》 北大核心 2015年第6期68-76,共9页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
关键词 大数据 灾难信息管理 数据挖掘 信息挖掘 big data disaster information management data mining information discovery
  • 相关文献

参考文献23

  • 1HRISTIDIS V, CHEN S C, LI T, et al. Survey of data man- agement and analysis in disaster situations [ J ]. Journal of Systems and Software,2010,83 (10) : 1701 - 1714.
  • 2US-Japan Big Data and Disaster Research (BDD) [ EB/ OL]. [ 2015-07-15 ]. http: //www. nsf. gov/pubs/2014/ nsf14575/nsf14575, htm.
  • 3李涛.数据挖掘的应用与实践[M].厦门:厦门大学出版社,2013:193-214.
  • 4KIM J K, SHARMAN R, RAGHAV H, et al. Efficiency of critical incident management systems:Instrument develop- ment and validation [ J ]. Decision Support Systems, 2007, 44( 1 ) :235 -250.
  • 5Google Flu Trends [ EB/OL]. [ 2015-07-17 ]. http ://www. google, org/flutrends.
  • 6ZHENG L,CHEN C,TANG L,et al. Data mining meets the needs of disaster information management[ J]. IEEE Trans- actions on Human-Machine Systems, 2014, 43 ( 5 ) : 451 - 464.
  • 7LI T, LI Q, ZHU S, et al. A survey on wavelet applications in data mining[ J]. ACM SIGKDD Explorations Newsletter, 2002,4(2) :49 -68.
  • 8TANG Liang, LI Tao, JIANG Yexi, et al. Dynamic query forms for database queries [ J ]. IEEE Transactions on Knowledge & Data Engineering,2014,26 (9) : 1.
  • 9ZHENG L, SHEN C,TANG L, et al. Disaster sitrep-a verti- cal search engine and information analysis tool in disaster management domain [ C ]//IEEE 13 th International Confer- ence on Information Reuse and Integration (IRI). Piscat- awav, IEEE_ 2012.457 - 465.
  • 10LI L, PENG W, KATARIA S, et al. A novel framework of recommending users and communities in social media [ C ]//Proceedings of the 22nd ACM International Confer- ence on Information & Knowledge Management. New York : ACM ,2013 : 1765 - 1770.

二级参考文献23

  • 1李卫,刘建毅,何华灿,王枞.基于主题的智能Web信息采集系统的研究与实现[J].计算机应用研究,2006,23(2):163-166. 被引量:15
  • 2MURRAY B,MOORE A.Sizing the Internet[M].[S.l.]:Cyveillance Inc,2000.
  • 3LAWRENCE S,GILES L.Accessibility and distribution of information on the Web[J].Nature,1999,400(8):107-109.
  • 4CHO J,CARCIA M H.The evolution of the Web and implication for an incremental crawler[C]//Proc of the 26th International Conference on Very Large Databases (NVLDB-00).2000.
  • 5BREWINGTON B E,CYBENKO C.How dynamic is the Web[C]//Proc of the 9th International World Wide Web Conference.2000.
  • 6MENCZER F,PANT C,RUIZ M E.Evaluating topic-driven Web crawlers[C]//Proc of SIGIR'01.New Orleans,Louisiana:[s.n.],2001:241-249.
  • 7MENCZER F,PANT C,SRINIVASAN P.Topic-driven crawlers:machine learning issues[EB/OL].(2002-05-15).http://dollar.biz.uiowa.edu/-fil/papers.html.
  • 8CHO J,GARCIA M H,PAGE L.Efficient crawling through URL ordering[J].Computer Networks and ISDN Systems,1998,30(1-7):161-172.
  • 9DeBRA P,HOUBEN G,KORNATZKY Y,et al.Information retrieval in distributed hypertexts[C]//Proc of the 4th RIAO Conference.New York:[s.n.],1994:481-491.
  • 10HERSOVICI M,JACOVI M,MAAREK Y S,et al.The shark-search algorithm:an application:tailored Web site mapping[C]//Proc of the 7th International World Wide Web Conference.Brisbane:[s.n.],1998:65-74.

共引文献131

同被引文献61

  • 1常思.信息的时间性[J].社会科学,1984(4):12-15. 被引量:2
  • 2宫剑,高亮.上海财经大学:提升数据质量之道[J].中国教育网络,2014(1):71-73. 被引量:4
  • 3李永和.洪涝灾害导致杭嘉湖平原地区水稻减产损失预测研究[J].浙江气象,1991,0(S1):19-19. 被引量:1
  • 4马费成.情报学的进展与深化[J].情报学报,1996,15(5):337-343. 被引量:81
  • 5桑尼尔·索雷斯.大数据治理[M].匡斌,译.北京:清华大学出版社,2014.
  • 6WANG R, ALLEN T, HARRIS W, MADNICK S. An infor- mation product approach for total infonuation awareness [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2003 (3) : 1-17.
  • 7Danette McGilvray. Executing data quality project [ EB/OL]. [ 2016-04-22 ]. http ://www. docin, corn/p-248586644, html.
  • 8hffommtic. Holistie data governance: a framework for competi- tive advantage [ EB/OL]. [2016-04-22 ]. https://www, infor- matica, com/~'ontent/danv'infonnatica-eom/global/amer/us/col- lateral/white-paper/holistie-data-govemanee-framework white- paper_2297, pdf.
  • 9桑尼尔·索雷斯.IBM数据治理成熟度模型[EB/OL].[2016-04-22].http://www.taodocs.conv"p-7291586.html.
  • 10FEMA. FEMA Enterprise IT Architecture, V2.0 [ EB/OL ]. [ 2016.-01-.26 ]. http://www, fema. gov/pdf/library/it_voll, pdf.

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部