期刊文献+

基于Contourlet域分块压缩感知的图像融合

Image Fusing by Block Compressed Sensing in Contourlet Domain
下载PDF
导出
摘要 针对传统图像融合方法导致纹理细节丢失的现象,提出了一种基于抗混叠移不变Contourlet域的分块压缩感知(block-based compressed sensing,BCS)图像融合算——Contourlet_BCS。把善于表达图像纹理及边缘信息的Contourlet变换引入了压缩感知稀疏表示中,同时对分解得到的低频系数采取加权的区域能量融合规则,高频系数采取基于广义高斯分布模型的加权融合规则进行图像系数融合,最后在压缩感知框架下利用带平滑处理的投影Landweber算法重构。实验结果表明,Contourlet_BCS融合效果优于传统方法,融合的图像纹理清晰.边缘细节信息更为丰富。 For traditional image fusion method results in loss of texture detail, a block compressed sensing image fusion algorithm in contourlet domain with a shift invariant and anti-aliasing ability called Contourlet_BCS was proposed. Contourlet_BCS introduced contourlet transform into the sparse representation step of compressed sensing since its remarkable feature of articulating the texture and edge information, meanwhile, the low-frequency coefficients fused by weighted rule of regional energy and high-frequency coefficients based on the weighted fusion rule by generalized Gaussian distribution model were also used. Finally, the high quality image can be reconstructed by smooth projection Landweber iteration method under the compressed sensing framework. Experimental results show tbat the image fused by Contourlet_BCS was better than the traditional method and the fusion image texture clear and had more abundant edge details.
作者 唐爱平 曹卉
出处 《电信科学》 北大核心 2015年第12期76-82,共7页 Telecommunications Science
基金 河南省科技厅项目"基于云存储的河南省终身教育海量数字化资源公共服务基础平台建模研究"(No.152102210304) 河南省教育厅项目"面向河南省社区远程教育的海量数字化教学资源存储管理研究"(No.ZJA15172)~~
关键词 分块压缩感知 CONTOURLET变换 广义高斯分布 加权融合 block compressed sensing, Contourlet transform, generalized Gaussian distribution, weighted fusion
  • 相关文献

参考文献12

二级参考文献115

共引文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部