期刊文献+

网络空间大搜索研究范畴与发展趋势 被引量:6

Research progress and trend of cyberspace big search
下载PDF
导出
摘要 随着网络空间的拓展、网络应用模式的发展及大数据时代的到来,面向网络空间的下一代搜索引擎——"大搜索"已具有迫切的需求。阐述了网络空间大搜索的内涵及其特点,提出了大搜索的研究范畴,包括泛在网络空间信息获取与发掘、知识仓库构建和管理、用户搜索意图准确理解与表示、用户意图高效匹配和推演、大搜索安全可信与隐私保护等方面的内容,并针对上述问题,指出了具有5S特性的网络空间大搜索技术的发展趋势。 With the expansion of cyberspace, the development of Web application and the arrival of the era of big data,searching for the cyberspace has become an urgent requirement. The concept "cyberspace big search" was proposed and its basic features was discussed. Based on these features, the architecture for the big search was proposed, including five parts: acquiring and mining information from the cyberspace, constructing and managing knowledge wares,understanding and representing the user's search intention, matching and reasoning the search intention, security and privacy in big search. The research progress and trend of cyberspace big search are summarized.
出处 《通信学报》 EI CSCD 北大核心 2015年第12期1-8,共8页 Journal on Communications
基金 国家重点基础研究发展计划("973"计划)基金资助项目(2013CB329601 2013CB329604 2013CB329606) 国家自然科学基金资助项目(61472433 61502517)~~
关键词 网络空间大搜索 意图理解 意图匹配 智慧解答 cyberspace big search intention understanding solution matching intelligent solution
  • 相关文献

参考文献47

  • 1HENDLER J. Web 3.0 emerging[J]. Computer, 2009, 42(1):111-113.
  • 2MANYIKA J, CHUI M, BROWN B, et al. Big Data: The Next Frontier for Innovation, Competition, and Productivity[M]. Mckinsey Global Institute. 2011.
  • 3CHAU M, CHEN H. Comparison of three vertical search spiders[J]. Computer, 2003, 36(5):56-62.
  • 4HOWE A E, DREILINGER D. Savvysearch: a meta-search engine that learns which search engines to query[J]. AI Magazine, 1997, 18(2): 19-25.
  • 5PAGE L, BRIN S, MOTWANIR, et al. The PageRank Citation Ranking: Bringing Order to the We[R]. 1999.
  • 6WILKINSON K, SAYERS C, KUNO H, et al. Efficient RDF storage and retrieval in jena2[A]. International Workshop on Semantic Web and Databases[C]. 2003.35-43.
  • 7ETZIONI O, KOK S, SODERLAND S, et al. Web-scale information extraction in knowltAll[A]. International World Wide Web Conference Proceedings[C]. 2004. 100-110.
  • 8YATES A, CAFARELLA M, BANKO M, et al. Textrurmer: open information extraction on the Web[A]. Proceedings of Human Language Technologies[C]. 2007.25-26.
  • 9WU W, LI H, WANG H, et al. Probase: a probabilistic taxonomy for text understanding[A]. Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data[C]. 2012.481-492.
  • 10FABIAN M, GJERGJI K, GERHARD W. YAGO: a core of semantic knowledge unifying wordnet and wikipedia[A]. International Conference on World Wide Web. 2007.697-706.

二级参考文献18

  • 1Cohen E,Halperin E,Kaplan H,Zwick U. Reachability and distance queries via 2-hop labels[J].SIAM Journal on Computing,2003,(05):1338-1355.doi:10.1137/S0097539702403098.
  • 2Jin R,Xiang Y,Ruan N,Fuhry D. 3-hop:a high-compression indexing scheme for reachability query[A].2009.813-826.
  • 3Wang H,He H,Yang J,Yu P S,Yu J X. Dual labeling:answering graph reachability queries in constant time[A].2006.75-86.
  • 4Agrawal R,Borgida A,Jagadish H V. Efficient management of transitive relationships in large data and knowledge bases[A].1989.253-262.
  • 5Jin R,Xiang Y,Ruan N,Wang H. Efficiently answering reachability queries on very large directed graphs[A].2008.595-608.
  • 6Jin R,Hong H,Wang H,Ruan N,Xiang Y. Computing label-constraint reachability in graph databases[A].2010.123-134.
  • 7Bruno N,Koudas N,Srivastava D. Holistic twig joins:optimal XML pattern matching[A].2002.310-321.
  • 8Chen L,Gupta A,Kurul M E. Stack-based algorithms for pattern matching on DAGs[A].2005.493-504.doi:10.1007/s00249-010-0621-z.
  • 9Cheng J,Yu J X,Ding B,Yu P S,Wang H. Fast graph pattern matching[A].2008.913-922.doi:10.1016/j.apnu.2009.04.010.
  • 10Tong H,Faloutsos C,Gallagher B,Eliassi-Rad T. Fast best-effort pattern matching in large attributed graphs[A].2007.737-746.

共引文献1

同被引文献76

引证文献6

二级引证文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部