期刊文献+

基于VSM和偏好本体的个性化信息检索技术的研究 被引量:5

Research of Personalized Information Retrieval Technology Based on VSM and Profile Ontology
下载PDF
导出
摘要 信息检索技术特别注重向量空间模型和偏好本体的结合。为便于找出用户输入的关键词间的关系,利用本体的关联分析及模糊本体值计算关键词间的相似度,本文采用加权算法和排序算法计算每个文档的权重,并根据文档权重进行检索结果的重排。为优化重排模型,本文还对每个检索对象的驻留时间进行合并,并使用衡量搜索引擎质量指标和评价标准F-measure对本文提出的重排机制性能进行测试。实验结果表明,使用本方法进行个性化信息检索的性能优于Google方法。 Information Retrieval(IR) techniques specifically focus on combination of Vector Space Model (VSM) with Profile Ontology. In this. paper, we propose a novel hybridization of the IR processing to calculate the weight of each document and to find relatiors between the user entered terms by using the weighting algorithm and the ranking algorithm, and takes advantage of ontology-based con'elation analysis which uses the fuzzy ontology value to calculate the similarity score between terms and includes the re-ranking algorithms to display the search results according to the weight of the document. We incorporate the Dwell Time of each retrieval session to optimize re-ranked model, and the performance of our re-ranking mechanism using ]Discounted Cumulative Gain (DCG) and F-measure was tested. The experimental result shows that the Web retrieval efficiency achieves improvement when our personalized retrieval approach is compared with the Google search.
作者 张一洲
出处 《情报学报》 CSSCI 北大核心 2015年第7期711-716,共6页 Journal of the China Society for Scientific and Technical Information
基金 江苏省高校哲学社会科学基金项目(No.2012SJD870001)
关键词 信息检索 偏好本体 关联分析 驻留时间 information retrieval, profile ontology, correlation analysis, dwell time
  • 相关文献

参考文献9

  • 1Baidu百科.搜索引擎[EB/OL].[2009-02-01].http://baike.baidu.com/view/1154.htm.
  • 2张培颖,李村合.智能搜索引擎中个性化信息检索技术研究[J].科学技术与工程,2008,8(17):5046-5049. 被引量:4
  • 3李树青.个性化信息检索技术综述[J].情报理论与实践,2009,32(5):107-113. 被引量:27
  • 4岑荣伟,刘奕群,张敏,茹立云,马少平.网络检索用户行为可靠性分析[J].软件学报,2010,21(5):1055-1066. 被引量:9
  • 5Radiinski F, Matthijs N. Personalizing web search usinglong term browsing history [ C ]//Proceedings of the 4thACM International Conference on Web Search and DataMining, Hong Kong, 2011: 25-34.
  • 6Vallet D, Fernandez M,Castells P. An adaption of thevector space model for ontology based information retrieval[J ]//IEEE Transaction on Knowledge and DataEngineering,2007,19(2) :261-272.
  • 7Gao J,Yuan W,Li X,et al. Smoothing clickthroughdata for web search ranking [ C ]//Proceedings of the31 nd international ACM SIGIR Conference on Researchand Development in information Retrieval,Singapore,2008:355-362.
  • 8李银松,施水才,张玉杰,吕学强.用户兴趣分类在个性化搜索引擎中的应用[J].情报学报,2008,27(4):535-540. 被引量:9
  • 9Kekalainen J, Jarvelin K. IR evaluation methods forretrieving highly relevant documents [ C ] //Proceedings ofthe 23 rd Annual International SIGIR Conference, HongKong,2000:41-48.

二级参考文献53

  • 1何晓阳,吴治蓉,连丽红,谢永碧.SALSA算法技术剖析[J].情报杂志,2004,23(7):26-27. 被引量:3
  • 2杨思洛.搜索引擎的排序技术研究[J].现代图书情报技术,2005(1):43-47. 被引量:23
  • 3吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 4余慧佳,刘奕群,张敏,茹立云,马少平.基于大规模日志分析的搜索引擎用户行为分析[J].中文信息学报,2007,21(1):109-114. 被引量:117
  • 5KHOPKAR Y, SPINK A, GILES C L, et al. Search engine personalization: an exploratory study [ EB/OL ]. http: // firstmonday, org/issues/issue8 7/khopkar/index. html.
  • 6KOBSA A. Privacy-enhanced Web personalization [ M ] // BRUSILOVSKY P, KOBSA A, NEJDL W. The adaptive Web: methods and strategies of web personalization. New York: Springer-Verlag, Berlin Heidelberg, 2007.
  • 7CHIRITA P A, FIRAN C, NEJDL W. Summarizing local context to personalize global Web search [ C ] // Proceedings of CIKM'06, 2006.
  • 8CHIRITA P A, BEIJDL W, PAIU R, et al. Using odp metadata to personalize search [ C ] // Proceedings of SIGIR '05, 2005.
  • 9TEEVAN J, DUMAIS S T, HORVITZ E. Beyond the commons: Investigating the value of personalizing Web search [C] //Proceedings of PIA'05, 2005.
  • 10DOU Z, SONG R. , WEN J R. A large-scale evaluation and analysis of personalized search strategies [ C ] //Proceedings of WWW '07, 2007.

共引文献46

同被引文献294

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部