期刊文献+

旋转射电暂现源研究进展 被引量:1

Research Progress of Rotating Radio Transients
下载PDF
导出
摘要 旋转射电暂现源是McLauglin等人在2006年采用单脉冲搜寻技术,对Parkes射电望远镜多波束脉冲星巡天数据的处理过程中发现的一类特殊天体。该类天体在绝大多数时间都处于射电宁静状态,偶尔发射特征宽度为毫秒量级的脉冲信号。对其进行长期脉冲到达时间观测发现,其具有类似于脉冲星到达时间特性,但目前还不清楚该天体和脉冲星之间的具体关系。综述了近10年来射电以及其他波段的观测研究和理论模型方面的进展。在射电观测方面,主要介绍观测认证技术(包括零色散滤波、DM搜寻、阈值设定、匹配滤波和效果图检验等)、到达时间以及偏振方面的观测研究进展;在其他波段方面,主要介绍X射线、光学以及近红外波段的观测研究进展。在相关理论模型方面,主要介绍远距离的脉冲星模型,物质与脉冲星磁层相互作用模型以及脉冲星磁层辐射带模型等研究进展。最后将对射电暂现源观测研究进行总结与展望。 Rotating Radio Transients(RRATs) are a set of special astronomical objects discovered by Mc Laughlin et al.(2006) during the reprocessing of the data from Parkes Multibeam Pulsar Survey with single pulse searching method. RRATs are quiescent most of the time. They only sporadically emit pulses with the order of milliseconds. Longterm observations on these objects reveal that their pulse timing property is similar to canonical pulsars. However, the relationship between these objects and canonical pulsars is so far still not clear. In this paper, we give a review about the research progress of multiband(radio as well as other bands) observations on RRAT, and the related RRAT emission mechanism models. At radio band, this paper will mainly introduce techniques of identifying RRAT signals(such as ZERO-DM filter, DM searching, thresholding, matched filtering and diagnosing), pulse timing and polarization observation results. In addition, this paper will summarize the observational results in X-ray, optical and near-infrared bands. Apart from these, the related RRAT emission mechanism models will be introduced, including the distant pulsar model, mutual effects between the pulsar magnetosphere and material model,the emission from the pulsar magnetosphere model etc. Finally, a summary and prospects on RRAT studies will be given in the last part of this paper.
出处 《天文学进展》 CSCD 北大核心 2015年第4期472-488,共17页 Progress In Astronomy
基金 国家自然科学基金(11173046 11403073) 上海市自然科学基金(13ZR1464500)
关键词 旋转射电暂现源 脉冲到达时间 辐射机制 RRAT pulse arrival time emission mechanism model
  • 相关文献

参考文献60

  • 1Hewish A, Bell S J, Pilkington J D H, et al. Nature, 1968,217: 709.
  • 2Lorimer D R. Living Rev. Relativity, 2008, 11: 8.
  • 3Gold T. Nature, 1968, 218: 731.
  • 4Burke-Spolar S, Bailes M. MNRAS, 2010, 402: 855.
  • 5McLaguhlin M A, Lyne A G, Lorimer D R, et al. Nature, 2006, 439: 817.
  • 6Keane E F, Kramer M, Lyne A G, et al. MNRAS, 2011,415: 3065.
  • 7Deneva J S, Cordes, J M, McLauglin M A, et al. ApJ, 2009, 703: 2259.
  • 8Shitov Yu P, Kuzmin A D, Dumskii D V, et al. Astronomy Reports, 2009, 53: 561.
  • 9Keane E F, Ludovici D A, Eatough R P, et al. MNRAS, 2010, 401: 1057.
  • 10Burke-Spolar S, Bailes M, Johnston S, et al. MNRAS, 2011, 416: 2465.

共引文献1

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部