期刊文献+

基于需求侧管理的办公建筑空调需量控制

Demand Control Method of Air Conditioning Load for Office Buildings Based on Demand Side Management
下载PDF
导出
摘要 提出一种办公建筑的需量控制方法。根据建筑空调的能耗特性,建立负荷动态模型进行负荷预测,结合需求侧管理要求进行负荷转移和调节,以完成需量控制。基于上海虹桥某商务小区办公空调历史负荷数据,计算了动态负荷模型,加入需求侧管理的需量约束以便实现负荷需量控制。最后探讨了负荷需量控制与节能问题。计算结果表明,需量控制方法无需复杂模型,具有显著的实用性。 A load demand control method of air conditioning was proposed in office buildings. According to the energy consumption characteristics of air conditioner, the dynamic load model was built, and the air conditioning load was forecasted. Combining by the demand side management (DSM) requirements, the load transfer and adjustment were carried out to complete the demand control. Based on the historical load data of Hongqiao' s buildings in Shanghai, the dynamic load model was calculated, and the demand constraint on DSM was added to control the load demand. Finally, the load demand control and energy saving problems were discussed. The test case results show that the method has the significant practicability without the complex model.
出处 《现代建筑电气》 2015年第12期58-62,共5页 Modern Architecture Electric
关键词 需求侧管理 建筑空调 需量控制 负荷 demand side management ( DSM ) building air conditioner demand control load
  • 相关文献

参考文献7

二级参考文献44

  • 1张宏刚,蒋传文,王承民,侯志俭.基于气象因素粗糙集理论的负荷预测方法[J].电力系统及其自动化学报,2004,16(4):59-63. 被引量:15
  • 2秦海超,王玮,周晖,王林.人体舒适度指数在短期电力负荷预测中的应用[J].电力系统及其自动化学报,2006,18(2):63-66. 被引量:36
  • 3LAMEDICA R,PRUDENZI A,CACIOTTA M,et al.The influence of meteorological parameters on Italian electric hourly load// Proceedings of 8th Mediterranean Electrotechnical Conference (MELECON'96):Vol 3,May 13-16,1996,Bari,Italy.Piscataway,NJ,USA:IEEE,1996:1453-1456.2001.
  • 4赵希正.电力负荷特性分析与预测.北京:中国电力出版社,2001.
  • 5MORI H,KANAOKA D.Application of preconditioned RBFN to temperature forecasting for short-term load forecasting// Proceedings of IEEE Region 10 Conference (TENCON'06),November 14-17,2006,Hong Kong,China.Piscataway,NJ,USA:IEEE,2006:4p.
  • 6CHOW T W S,LEUNG C T.Neural network based short-term load forecasting using weather compensation.IEEE Trans on Power Systems,1996,11(4):1736-1742.
  • 7CHEN S T,YU D C,MOGHADDAMJO A R.Weather sensitive short-term load forecasting using nonfully connected artificial neural network.IEEE Trans on Power Systems,1992,7(3):1098-1105.
  • 8FAN S, CHEN L, LEE W J. Short-term load forecasting using comprehensive combination based on multimeteorological information. IEEE Trans on Industry Applications, 2009,45(4): 1460 -1466.
  • 9CHOW T W S, LEUNG C T. Neural network based shortterm load forecasting using weather compensation. IEEE Trans on Power Systems, 1996, 11(4): 1736-1742.
  • 10KYUNG B S, SEONG K H, JUNG W P, et al. Hybrid load forecasting method with analysis of temperature sensitivities. IEEE Trans on Power Systems, 2006, 21(2) : 869-876.

共引文献183

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部