期刊文献+

改进的K-means算法在电厂煤质分析中的应用 被引量:1

Application of Improved K-means Algorithm in the Analysis of Coal Quality in Power Plant
下载PDF
导出
摘要 针对传统K-means算法聚类结果受初始值影响、迭代次数多和易出现局部最优解的弊端,研究改变初始值的选择,并采用三角形三边关系定律减少迭代次数对算法作进一步改善.通过数据对比了传统算法与改进算法,结果表明改进算法有较高的准确率.最后,通过实例为电厂的煤种选择提供了参考. In view of the fact that the traditional K-means algorithm for clustering results are affected by the initial value, the number of iterations and the more likely defect of local optimal solution,a study is conducted on the initial value selection and the triangle trilateral relations law is adopted to reduce the number of iterations of the algorithm for further improvement. Through comparison of the traditional algorithm and the improved algorithm,the results show that the improved algorithm has higher accuracy. Finally, an economic choice support in power plant coal is examplified.
出处 《上海电力学院学报》 CAS 2015年第6期585-588,596,共5页 Journal of Shanghai University of Electric Power
基金 国家自然科学基金(71271065)
关键词 聚类分析 数据挖掘 K-MEANS算法 经济选择 clustering analysis data mining K-means algorithm economic choice
  • 相关文献

参考文献5

二级参考文献17

  • 1曾伊琳.扬长避短 应对“节调”——大型火力发电企业应对节能调度策略[J].中国电力企业管理,2009(4):38-39. 被引量:5
  • 2袁方,孟增辉,于戈.对k-means聚类算法的改进[J].计算机工程与应用,2004,40(36):177-178. 被引量:48
  • 3易珺,路璐,曹东.改进的k-means算法在客户细分中的应用研究[J].微型机与应用,2005,24(12):52-53. 被引量:4
  • 4陈光宇,胡丽英,苏勇.聚类分析在电信行业客户关系管理中的应用[J].微计算机信息,2006(11X):210-211. 被引量:5
  • 5La Jolla. Alternatives to the k-means algorithm that find better clustering. Department of Computer Science and Engineering,University of California,San Diego,CA92093
  • 6Kaufan L,Rousseeuw PJ.Finding Groups in Data:an Introduction to Cluster Analysis[M].New York:John Wiley & Sons, 1990
  • 7Guha S,Rastogi R,Shim K.CURE:an efficient clustering algorithm for large databases[C].In:Haas LM,Tiwary A eds.Proceedings of the ACM SIGMOD International Conference on Management of Data,Seattle: ACM Press, 1998: 73~84
  • 8Agrawal R,Gehrke J,Gunopolos D et al. Automatic subspace clustering of high dimensional data for data mining application[C].In:Haas LM,Tiwary A eds. Proceedings of the ACM SIGMOD International Conference on Management of Data, Seattle: ACM Press, 1998: 94~105
  • 9Moore A W. The anchors hierarchy: Using the triangleinequality to survive high dimensional data[ C]//In: Proc. UAI- 2000: The Sixteenth Conference on Uncertainty in Artificial- Intelligence. New York:Springer,2000.
  • 10Han J W,Kamber M.Data Mining: Concepts and Techniques [ M]. San Francisco:Morgan Kaufmann,2000.

共引文献53

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部