期刊文献+

化离散为连续的极限求解模型——无穷小和式极限的探究

The Limit Solving Model of Changing the Discrete into Continuous——The Exploration of An Infinitesimal Induces
下载PDF
导出
摘要 极限是微积分的基础,对于常规的七类未定型极限,教材都有详细的归类和讲解,对于无数个无穷小和式极限,用常规方法求解比较难,一般教材又不介绍它的极限求解基本方法,而它代表了极限思想的最本质,可用化离散为连续的方法,探究一般的化归模型,并将模型推广,更深层领悟极限的本质,实现离散与连续的熔合。 Limit is the foundation of calculus. The teaching material has a detailed classification and interpretation for the seven conventional undifferentiated limits. For thousands of infinitesimal induces, it's difficult to solve by the conventional methods, and the general teaching material do not introduce its basic method to solve the limit,although it represents the essence of limit thought. It's available for us to use the method of changing discrete into continuous, and to explore the general reduction model to promote the model. In this way, we can comprehend the essence of limit deeply, and realize the fusion of discrete and continuous.
作者 许艾珍
出处 《职大学报》 2015年第6期79-81,共3页 Journal of the Staff and Worker’s University
关键词 定积分 无穷小和式极限 探究 definite integral infinitesimal induces exploration
  • 相关文献

参考文献4

二级参考文献5

  • 1陈刚.经济应用数针[M].北京:高等教育出版社,2008:15-16.
  • 2华东师范大学数学系.数学分析(上)[M].北京:高等教育出版社,2000.
  • 3翟龙余.一个极限定理及应用.科技信息,2007,(10):86-89.
  • 4同济大学,天津大学,浙江大学等.高等数学(上)[M].北京:高等教育出版社,2005:59.
  • 5袁南桥.关于“代替法”的一个定理[J].桂林电子工业学院学报,2002,22(4):10-12. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部