期刊文献+

轴向柱塞泵压力波非线性特征实验研究

Nonlinear Characteristics of Pressure Wave of Axial Piston Pump
下载PDF
导出
摘要 为了探讨液压设备中压力波的非线性特征,构建以轴向柱塞泵为动力源的液压实验平台,采集4种油液含气量状况下管道中压力波的时域信号。根据非线性理论和信号处理方法,通过互信息法和Cao方法重构油液压力波信号相空间,利用高斯核函数法和Wolf方法计算压力波信号的关联维数和最大Lyapunov指数。实验结果表明,油液压力信号具有较强的分形特征;随着含气量的增大,油液压力信号表现出较大的随机性和混沌特征。 In order to investigate nonlinear characters of pressure wave in hydraulic devices, the test device is used to the hydraulic system with axial piston pump and the pressure wave signs are gained in time domain at four kinds of air content. Based on nonlinear theory and signal processing, the phase space of pressure wave is reconstructed and the embedding parameters are obtained by the mutual information and Cao's methods. The correlation dimensions and the maximum Lyapunov exponent are calculated for nonlinear characteristics using Gauss Kernel Function and Wolf's methods, respectively.We can conclude that the pressure wave of the hydraulic oil has strong fractal characteristic and the result shows higher stochastic and chaotic characteristics with increasing the contents of air.
出处 《煤矿机械》 2015年第12期108-110,共3页 Coal Mine Machinery
基金 国家自然科学基金资助项目(51275375) 西安科技大学博士启动基金资助项目(2013QDJ010) 西安科技大学培育基金资助项目(2009029)
关键词 液压系统 压力波 关联维数 最大LYAPUNOV指数 hydraulic system pressure wave correlation dimensions maximum Lyapunov exponent
  • 相关文献

参考文献4

  • 1夏立群,牛世勇,张新国.液压系统的气体污染与控制[J].机床与液压,2008,36(7):80-82. 被引量:16
  • 2王位,孔勇,金敏,安骥.粘度对反气泡稳定性的影响[J].液压气动与密封,2014,34(6):11-13. 被引量:4
  • 3Fraser A M,Swinney H.Independent coordinates for strange attractors from mutual information[J].Physical Review A(Atomic,Molecular and Optical Physice).1986,33(2):1 134-1 140.
  • 4PACKARD N H,CRUTCHFIELD J P,FARMER J D,et al.Geometry from a time serie[J].Physical Review Letters,1980,45(9):712-716.

二级参考文献16

  • 1田瑞杰.液压系统气穴现象[J].机械,2001,28(z1):156-168. 被引量:2
  • 2蔡云生,姚建庚.电液伺服系统油液中气泡的危害和预防措施[J].液压气动与密封,2004,24(5):17-18. 被引量:4
  • 3W.Hughes and A.R.Hughes.Examination for Protein Films[J].Nature(London),1932,129:59.
  • 4C.L.Strong.The Amateur Scientist[J].Scientific American,1974,(4).
  • 5S.Dorbolo,N.Vandewalle,D.Quere.Antibubbles:Evidences of a Critical Pressure[Z].New York:Cornell University Library,2003.
  • 6S.Dorbolo,E.Rassat,N.Vandewalle,D.Quere.Aging of an Antibubble[J].Europhys.Lett,2005,69(6):966-970.
  • 7P.G.Kim and J.Vogel.Antibubbles:Factors That Affect Their Stability[J].Colloids Surf.Eng.Aspects,2006,(289):237-244.
  • 8Jun Zou,Chen Ji,Baogang Yuan,et al.Collapse of an Antibubble[J].Phys.Rev.E,2013,87,(6).
  • 9Justin E.Slipe and David W.McGrail.Magnetic Antibubbles:Formation and Control of Magnetic Macroemulsions for Fluid Transport Application[J].Journal of Applied Physics,2013,(6).
  • 10Albert T.Pooringa.Long-lived Antibubbles:Stable Antibubbles Through Picketing Stabilization[J].Langmuir,2011,(3).

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部