期刊文献+

氢气添加对乙醇/空气预混火焰燃烧特性影响的数值模拟研究 被引量:3

Numerical study on effects of hydrogen addition on combustion characteristics of ethanol/air premixed flames
下载PDF
导出
摘要 通过对不同混合比率的乙醇/氢气/空气燃烧特性进行数值模拟,研究氢气添加量对点火延迟时间、层流燃烧速度、火焰厚度、化学反应滞留时间及组分分布情况的影响。研究发现一定程度上氢气添加量的增加能够缩短混合气体的点火延迟时间,并且氢气对点火延迟时间的影响随着温度的升高而逐渐减小。随着混合比率的增大,层流燃烧速度增大,并且在混合比率大于0.4时显著增大。火焰厚度及化学反应滞留时间随氢气增加而逐渐减小。此外,进一步分析组分分布情况得知氢气添加使火焰中H*、O*、OH*自由基摩尔分数峰值增大,并且H+O+OH摩尔分数峰值与层流燃烧速度存在线性关系。 A numerical study on ethanol/hydrogen/air premixed flames with various hydrogen fractions is carried out to investigate the effects of hydrogen addition on the ignition delay time, laminar burning velocity as well as flame structure. When more hydrogen is added to the fuel, the ignition delay time is shortened to some extent, and the effects of hydrogen addition on ignition delay time are weakened with increasing temperature. The laminar burning velocity increases with the increase of the mixing ratio, particularly when the mixing ratio is greater than 0. 4. Flame thickness and characteristic residence time gradually decrease with the increase of hydrogen fraction. In addition, further analysis of the distribution of different species shows that hydrogen addition causes higher H^+, O^+ , OH^+ peak concentrations, and there is a linear correlation between the peak concentration of H+O+OH and the laminar burning velocity.
出处 《火灾科学》 CAS CSCD 北大核心 2015年第3期119-128,共10页 Fire Safety Science
基金 国家自然科学基金(51176181) 国家重点基础研究发展计划(2012CB719704) 高等学校博士学科点专项科研基金(20123402110047 20133402110010)资助项目
关键词 氢气添加 乙醇 点火延迟时间 层流燃烧速度 数值模拟 H2 addition Ethanol Ignition delay time,Laminar burning velocity Numerical simulation
  • 相关文献

参考文献22

  • 1Bergthorson JM, Thomson MJ. A review of the com- bustion and emissions properties of advanced transporta- tion biofuels and their impact on existing and future en- gines[J]. Renewable and Sustainable Energy Reviews, 2015, 42(0) .- 1393-1417.
  • 2Demirbas A. Biofuels securing the planers future energy needs[J]. Energy Conversion and Management, 2009, 50(9) . 2239-2249.
  • 3Towler BF. The future of energy[M]. Boston: Academ- ic Press, 2014.
  • 4Von Blottnitz H, Curran MA. A review of assessments conducted on hio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective[J]. Journal of Cleaner Production, 2007, 15 (7) . 607-619.
  • 5Luo L, et al. An energy analysis of ethanol from cellu- losic feedstock-Corn stover[J]. Renewable and Sustain- able Energy Reviews, 2009, 13(8) I 2003-2011.
  • 6Limayem A, Ricke SC. Lignocellulosic biomass for bio- ethanol production: Current perspectives, potential is- sues and future prospects[J]. Progress in Energy and Combustion Science, 2012, 38(4). 449-467.
  • 7Basu S, et al. Improvement in performance of a direct ethanol fuel cell: Effect of sulfuric acid and hi-mesh[J]. Electrochemistry Communications, 2008, 10 ( 9 ): 1254-1257.
  • 8Wang S, et al. Effect of hydrogen addition on combus- tion and emissions performance of a spark-ignited etha- nol engine at idle and stoichiometric conditions[J]. In- ternational Journal of Hydrogen Energy, 2010, 35(17). 9205-9213.
  • 9Park C, et al. Performance and exhaust emission charac- teristics of a spark ignition engine using ethanol and eth- anol-reformed gas[J]. Fuel, 2010, 89(8): 2118-2125.
  • 10Yu G, et al. Laminar flame speeds of hydrocarbon + air mixtures with hydrogen addition [J]. Combustion and Flame, 1986, 63(3). 339-347.

同被引文献23

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部