期刊文献+

膜生物反应器ASM-CFD耦合仿真研究进展 被引量:4

Research advances on membrane bioreactor simulation using ASM-CFD coupled approach
下载PDF
导出
摘要 膜生物反应器(membrane bioreactor,MBR)出水水质和运行能耗受生化反应和水力条件的共同影响,开展基于生化反应动力学与水力输运过程相互作用下的数字化MBR仿真模拟,对MBR节能减耗、结构优化及创新具有重要意义.文章介绍在MBR生物-水力场仿真模拟中常用的生化反应动力学模型,活性污泥模型(activated sludge model,ASM)及计算流体力学(computational fluid dynamics,CFD)模型,综述ASM-CFD耦合模型对MBR生物-水力场仿真研究的最新进展.综述结果表明,ASM-CFD可以较好地模拟短污泥龄(sludge residence time,SRT)MBR生物-水力场,能提供准确、丰富的流场和污水组分浓度分布信息. Membrane bioreactor(MBR)effluent quality and operation energy consumption are affected by hydraulic condition combined with biochemical reactions.Studying the biochemical reaction process while taking the hydraulic effect into account is of great significance in operating a MBR steadily and energyefficientcy.Activated sludge model(ASM)and computational fluid dynamics(CFD)modeling applied in MBR process were reviewed in terms of biological-hydraulic field simulation.The reviewed results showed that ASM-CFD integrated modeling was capable to simulate the MBR biological-hydraulic fieldwith short sludge residence time(SRT),and gave accurate and abundant information of flow field and sewage species concentration distribution.ASM-CFD integrated modeling was thus believed to be a powerful tool for MBR research,design and application.However,there were few publications on MBR modeling based on ASM-CFD,so further detailed research needs to be developed.
出处 《膜科学与技术》 CAS CSCD 北大核心 2015年第6期126-133,共8页 Membrane Science and Technology
基金 国家自然科学基金项目(51278483) 国家水体污染控制与治理科技重大专项(2012ZX07203-002)
关键词 计算流体力学 膜生物反应器 膜污染 活性污泥模型 溶解性微生物产物 computational fluid dynamics(CFD) membrane bioreactor(MBR) membrane fouling activated sludge model(ASM) soluble microbial product(SMP)
  • 相关文献

参考文献31

  • 1Judd S. The MBR Book-Principles and Applications of Membrane Bioreactors for Water and Wastewater Treat- ment~MJ//UK: Elsevier, 2011: 12-14.
  • 2朱红钧,林元华,谢龙汉.FLUENT12流体分析及仿真[M].北京:清华大学出版社,2011.
  • 3Ansys Inc. FLUENT Theory Guide[M]. United States of America. PERA GLOBAL, 2014: 253-299.
  • 4Jajuee B, Margaritis A, Karamanev D, et al. Measure- ments and CFD simulations of gas holdup and liquid ve- locity in novel airlift membrane contactor[J]. AIChE J, 2006, 52(12). 4079-4089.
  • 5Naessens W, Maere T~ Ratkovich N, etal. Critical re- view of membrane bioreactor models-Part 2: Hydrody- namic and integrated models ~ J ]. Bioresour Technol, 2012, 122: 107-118.
  • 6Wei P, Zhang K, Gao W, et al. CFD modeling of hy- drodynamic characteristics of slug bubble flow in a flat sheet membrane bioreactor[J]. J Membr Sci, 2013, 445 (10) : 15-24.
  • 7Ndinisa N, Wiley D, Fletcher D. Computational fluid dy- namics simulations of Taylor bubbles in tubular mem- branes: rt~el validation and application to laminar flow systems[J]. Chem Eng Res Des, 2005, 83(1): 40-49.
  • 8B6hrn L, Drews A, Prieske H, etal. The importance of fluid dynamics for MBR fouling mitigation[J]. Biore-sour Technol, 2012, 122(10): 50-61.
  • 9Le Moullec Y, Potier O, Gentric C, et al. Activated sludge pilot plant: comparison between experimental and predicted concentration profiles using three different modelling approaches[J]. Water Res, 2011, 45 (10) : 3O85- 3097.
  • 10Lei L, Ni J. Three-dimensional three-phase model for simulation of hydrodynamics, oxygen mass trans- fer, carbon oxidation, nitrification and denitrification in an oxidation ditch[J]. Water Res, 2014, 53(4): 200-214.

共引文献1

同被引文献34

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部