期刊文献+

时标上一类多重变时滞Lasota-Wazewska模型的概周期解 被引量:1

Almost Periodic Solution for A Class of Lasota-Wazewska Model on Time Scales
下载PDF
导出
摘要 研究了时标上一类多重变时滞Lasota-Wazewska模型概周期解的存在性和全局指数稳定性问题.利用压缩映射原理和指数二分性得到了该系统概周期正解存在且唯一的充分条件;借助Gronwall不等式证明了该系统概周期正解的全局指数稳定性. This paper is concerned with the problem of almost periodic solution of a class of Lasota- Wazewska model with multiple time- varying delays on time scales. Some sufficient conditions for the existence of a unique almost periodic positive solution are established by applying contraction mapping principle and exponential dichotomy theory. Moreover,the global exponential stability of the almost periodic positive solution is proved by means of the Gronwall inequality.
出处 《曲靖师范学院学报》 2015年第6期5-9,38,共6页 Journal of Qujing Normal University
基金 国家自然科学基金项目"扰动可积非哈密顿系统的极限环分支"(11161038) 云南省教育厅科学研究基金项目"泛函微分方程周期解研究"(08C0185) 文山学院科学研究基金项目"时标上时滞神经网络的概周期解研究"(15WSY13)
关键词 时标上的Lasota-Wazewska模型 概周期解 存在性 全局指数稳定性 Lasota-Wazewska model on time scale almost periodic solution existence global exponential stability
  • 相关文献

参考文献10

  • 1Alzabut O, Stamov G T, Sermutlu E. Positive almost periodic solutions for a delay logarithmic population mode[J]. Math. Comput. Model. , 2011 ( 1 - 2) : 161 - 167.
  • 2He Mengxin, Chen Fengde, Li Zhong. Almost periodic solution of an impulse differntial equation model of plankton allelopathy [J]. Nonlinear Anal., 2010 ( 4 ) : 2296 - 2301.
  • 3Gopalsamy K, Trofimchuk S. Almost periodic solutions of lasota - Wazewska - type delay differential equation [J]. J. Math. Anal. Appl., 1999( 1 ) : 106 - 127.
  • 4Wazewska - Czyzewska M, Lasota A. Mathematical problems of the dynamics of red blood cells system [J]. Ann. Polish Math. Soc. Ser. III Appl. Math., 1988 (1):23-40.
  • 5Huang Zuda, Gong Shuhua, Wang Lijuan. Positive al- most periodic solution for a class of Lasota - Wazewska model with multiple time - varying delays [J]. Com- put. Math. Appl., 2011(4) : 755 -760.
  • 6Liu Guirong, Zhao Aimin, Yan Jurang. Existence and global atractivity of unique positive periodic solution for a Lasota - Wazewska model [J]. Nonlinear Anal. , 2006(8) : 1737 - 1746.
  • 7Zhou Zheng, Zhang Zhengqiu. Existence and global at- tractivity positive periodic solutions for a discrete model [J]. Electronic Journal of Differential Equations, 2006 (95) : 1 -8.
  • 8Hilger S. Analysis on measure chains: a u- nifiod approach to continuous and discrete calculus [J].Results Math., 1990(1-2) :18 - 56.
  • 9Bohner M. Peterson A. Dynamic equations on time scales: An introduction with applications [M]. Boston: Birkhauser Press, 2001:22,58,59,54,55,62,75.
  • 10姚志健.时标上的具有线性收获项的Nicholson's Blowflies模型概周期正解的存在性及全局渐近稳定性(英文)[J].应用数学,2015,28(1):224-232. 被引量:1

二级参考文献14

  • 1Gurney W S C,Blythe S P,Nisbet R M.Nicholson's blowflies revisited[J].Nature,1980,287:17-21.
  • 2Nicholson A J.An outline of the dynamics of animal populations[J],Aust.J.Zool.,1954,2:9-65.
  • 3WANG Wentao.Positive periodic solutions of delayed NicholsoiVs blowflies models with a nonlinear density-dependent mortality term[J].Appl.Math.Modelling,2012,36(10):4708-4713.
  • 4Berezansky L,Braverman E,Idels L.Nicholson's blowflies differential equations revisited:main results and open problems[J].Appl,Math.Modelling,2010,34(6):1405-1417.
  • 5ZHAO Weirui,ZHU Chunmiao,ZHU Huaping.On positive periodic solution for the delay Nicholson's blowflies model with a harvesting term[J].Appl.Math.Modelling,2012,36(7):3335-3340.
  • 6Bohner M,Peterson A.Dynamic Equations on Time Scales:An Introduction with Applications[M].Boston:Birkhauser,2001.
  • 7Bohner M,Peterson A.Advances in Dynamic Equations on Time Scales[M],Birkhauser, Boston,2003.
  • 8Hilger S.Analysis on measure chains-a unified approach to continuous and discrete calculus[J].Results Math.,1990,18:18-56.
  • 9ZHANG Jimin,FAN Meng,ZHU Huaping.Existence and roughness of exponential dichotomies of linear dynamic equations on time scales[J].Computers and Mathematics with Applications,2010,59(8):2658-2675.
  • 10LI Yongkun-WANG Chao.Almost periodic functions on time scales and applications[J].Discrete Dynamics in Nature and Society,doi:10.1155/2011/727068,2011:1-20.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部