期刊文献+

遥感图像的异质性测度分割效果评价 被引量:2

Heterogeneity Measure Based Segmentation Performance Evaluation for Remote Sensing Image
下载PDF
导出
摘要 针对高分辨率遥感图像分割结果的评价问题,提出一种基于异质性测度的非监督分割评价方法。首先,通过全局方差和加权Moran指数分别表示对象内异质性和对象间异质性,并利用二者归一化后的和式来对整体分割结果进行评价。其次,为了进行局部分割结果评价,提出一种基于对象方差和局部Geary指数的异质性测度。最后,利用多分辨率分割方法对遥感图像进行分割,并利用提出的方法进行分割评价。实验结果表明,提出的方法能够对不同分割尺度结果进行有效评价,同时可以对过分割区域和欠分割区域进行判断。 In order to evaluate segmentation quality of high resolution remote sensing image, an un-supervised segmentation evaluation method based on heterogeneity measure was proposed. Firstly, global variance and weighted Moran index were introduced to express the intro-object and inter-object heterogeneity. Then the two heterogeneity measure were normalized and summed to evaluate the whole performance of segmentation result. Secondly, to evaluate the local quality of image objects, a heterogeneity measure based on object variance and local Geary index was presented. Finally, an experiment is carried out on a remote sensing which was segmented by multi-resolution segmentation method. And heterogeneity measure proposed in this paper was used to evaluate the segmentation result.It shows that the heterogeneity measure can effectively evaluate the different scale segmentation results and meanwhile can identify regions which are over-segmented or under-segmented.
出处 《测绘科学技术学报》 CSCD 北大核心 2015年第5期479-482,488,共5页 Journal of Geomatics Science and Technology
关键词 遥感图像 分割评价 尺度 MORAN指数 Geary指数 remote sensing image segmentation evaluation scale Moran index Geary index
  • 相关文献

参考文献11

  • 1BLASCHKE T,HAY G J,KELLY M,et al.Geographic Object-Based Image Analysis-Towards a New Paradigm[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,87:180-191.
  • 2都伟冰,王双亭,王春来.基于机载LiDAR粗糙度指数和回波强度的道路提取[J].测绘科学技术学报,2013,30(1):63-67. 被引量:11
  • 3JOHNSON B,XIE Z.Unsupervised Image Segmentation Evaluation and Refinement Using a Multi-Scale Approach[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(4):473-483.
  • 4PAGLIERONI D W.Design Considerations for Image Segmentation Quality Assessment Measures[J].Pattern Recognition,2004,37(8):1607-1617.
  • 5LANG S.Object-Based Image Analysis for Remote Sensing Applications:Modeling Reality-Dealing with Complexity[M].Springer,2008:3-27.
  • 6ZHANG L,JIA K,LI X,et al.Multi-Scale Segmentation Approach for Object-Based Land-Cover Classification Using HighResolution Imagery[J].Remote Sensing Letters,2014,5(1):73-82.
  • 7DR GU L,CSILLIK O,EISANK C,et al.Automated Parameterisation for Multi-Scale Image Segmentation on Multiple Layers[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,88:119-127.
  • 8ESPINDOLA G,C MARA G,REIS I,et al.Parameter Selection for Region-Growing Image Segmentation Algorithms Using Spatial Autocorrelation[J].International Journal of Remote Sensing,2006,27(14):3035-3040.
  • 9CORCORAN P,WINSTANLEY A,MOONEY P.Segmentation Performance Evaluation for Object-Based Remotely Sensed Image Analysis[J].International Journal of Remote Sensing,2010,31(3):617-645.
  • 10陈彦光.基于Moran统计量的空间自相关理论发展和方法改进[J].地理研究,2009,28(6):1449-1463. 被引量:347

二级参考文献41

共引文献356

同被引文献30

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部