摘要
提出了统计声学能量流(statistical acoustic energy flow,SAEF)方法,将不同物理场的激励耦合后加载到高铁SAEF模型上,计算车外激励与车内声场及车内声腔之间的声能流动,可分析车内全频噪声.首先,采用刚性多体动力学、快速多极边界元和大涡模拟提取了350,km/h下的轮轨力/二系悬挂力、轮轨噪声和空气动力噪声,并且这些激励通过了参考文献试验的验证.其次,搭建了车厢有限元模型,基于多点激励-多点响应技术验证了车厢仿真模态,证明了整体的车厢及区域的铝型材-内饰组合板的精度,间接保证了基于模态特性的组合板隔声量的准确度.最后,搭建了SAEF模型,加载耦合激励并定义组合板隔声性能后,计算了350,km/h下、0~4,000,Hz内的车内噪声.对比车内中心声腔的仿真与试验声压级,结果显示两者的变化趋势基本一致,声压级总值相差2.6,d B(A),符合工程要求,验证了SAEF方法应用于高铁车内全频噪声研究的可行性.
Statistical acoustic energy flow(SAEF)method was proposed to study full-spectrum interior noise of highspeed railway trains(HST),considering multi-physical-field coupling excitations to stimulate the acoustic energy flow between the exterior excitations and interior noise,as well as between the interior acoustic cavities. First of all,rigid multi-body dynamics(RMBD),fast multi-pole boundary element analysis(FMBEA)and large-eddy simulation(LES)were employed to extract the wheel-rail interaction forces/secondary suspension forces,wheel-rail rolling noise and aerodynamic noise at 350,km/h, respectively; and these excitations were validated by references.Second,a finite element(FE)car model was constructed;the precision of the global FE car as well as the local FE aluminum alloy extrusion-trim part composition boards was validated by modal analysis via multi-input and multioutput technology. Thus,the mode-based sound transmission loss(STL)accuracy of any composition board was indirectly ensured. Finally,the SAEF model of the curb car,which was stimulated by the coupled excitation and defined with the given composite board STLs,was constructed to calculate the interior noise in 0~4,000,Hz at 350,km/h.The simulated and measured interior center sound pressure levels(SPL)were compared. The results show that the variation trend of the simulated 1/3,octave band SPL spectrum agrees well with that of the on-line-measured one. The deviation between the simulated and measured overall SPLs is 2.6,d B(A),which was well controlled below the engineering tolerance limit,thus validating the feasibility of SAEF method in the HST full-spectrum interior noise analysis.
出处
《天津大学学报(自然科学与工程技术版)》
EI
CSCD
北大核心
2015年第11期960-968,共9页
Journal of Tianjin University:Science and Technology
基金
国家高技术研究发展计划(863计划)资助项目(2011AA11A103)
关键词
高速铁路
全频噪声
统计声学能量流
多物理场耦合激励
high-speed train
full-spectrum noise
statistical acoustic energy flow
multi-physical-field coupling excitation