期刊文献+

石化企业异常工况预警与过程安全管理评估技术研究 被引量:7

Research on technology of abnormal condition warning and process safety management assessment for Petrochemical Enterprise
下载PDF
导出
摘要 针对复杂多变的石化装置生产过程,提出了过程安全管控架构和技术路线,给出了基于异常工况识别预警的实时安全运行指导系统和过程安全管理评估系统,并在某炼化企业的延迟焦化、催化裂化、乙烯等装置开展了应用。结果表明,该系统可增强装置异常工况监测预警和处置能力,对保障装置安全稳定运行,提升装置风险智能化管控水平具有现实意义。 Aiming at the complex and variable petrochemical plant production process,in order to realize the dynamicmonitoring,analysis,early warning and control of the risk of production process,and to improve the handling capability ofthe abnormal event and process safety management level of the production plant,this paper proposed process safetymanagement and control architecture and technology route of real-time and periodic combination. It proposed the real-timesafety operation guidance system and the process safety management assessment system based on the abnormal conditioidentification and early warning technology. It is applied to the delayed coking,catalytic cracking and ethylene plant petrochemical enterprise. Application showed that the system can enhance the abnormal operating condition monitoring anearly warning and disposal capability. It has practical significance for ensuring the safe and stabile operation and upgradinrisk's intelligent control level of these units and plants.
出处 《炼油与化工》 2015年第6期12-15,共4页 Refining And Chemical Industry
基金 国家高技术研究发展计划基金项目 编号:2013AA040701
关键词 异常工况 实时监测 过程安全管理 周期评估 管理评估 abnormal condition real-time monitoring process safety management periodic assessment management assessment
  • 相关文献

参考文献1

二级参考文献8

  • 1RichardO DudaPeterE HartDavidG Stork 李宏东 姚天翔 译.模式分类(第二版)[M].北京:机械出版社,2003..
  • 2DAVID M J TAX,ROBERT P W DUIN.Support Vector Data Description[J].Pattern Recognition Letters,1999,20(11~13):1191-1199.
  • 3Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1999.
  • 4Yan Liu,Srikanth Gururajan,Bojan Cukic,et cl.Validating an Online Adaptive System Using SVDD[C].In:15th IEEE International Conference on Tools with Artificial Intelligence(ICTAI'03).November 03-05,2003 Sacramento,California,USA.p.384.
  • 5常兆光,王清河,宋岱才等编著.随机数据处理方法(修订本).山东:石油大学出版社.1997.
  • 6Caoa L J,Chuab K S,Chong W K.et cl.A Comparison of PCA,KPCA and ICA for Dimensionality Reduction in Support Vector machine.Neurocomputing,2003,(55):321-336.
  • 7DAVID M J TAX,ROBERT P W DUIN.Support Vector Data Description[J].Machine Learning,2004,54:45-66.
  • 8李凌均,张周锁,何正嘉.基于支持向量数据描述的机械故障诊断研究[J].西安交通大学学报,2003,37(9):910-913. 被引量:55

共引文献17

同被引文献45

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部