期刊文献+

关于含非齐次Dirichlet边值的Brzis-Nirenberg问题的研究

On the Brezis-Nirenberg Problem with Nonhomogeneous Dirichlet Boundary Conditions
下载PDF
导出
摘要 该文研究了含非齐次Dirichlet边值的Brezis-Nirenberg方程对应泛函的Nehari流形的结构.并结合Lusternik-Schnirelman畴数理论和极大极小原理,证明了含非齐次Dirichlet边值的Brezis-Nirenberg方程存在4个正解. In this paper,we study the decomposition of Nehari manifold for the BrezisNirenberg problem with nonhomogeneous Dirichlet boundary conditions.By using this result,the Lusternik-Schnirelman category and the minimax principle,we establish a multiple result(four solutions) for the Brezis-Nirenberg problem with nonhomogeneous Dirichlet boundary conditions.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第6期1025-1043,共19页 Acta Mathematica Scientia
基金 中国矿业大学中央高校基本科研业务费(2014QNA67)资助
关键词 SOBOLEV临界指数 多解 非齐次Dirichlet边值. Critical Sobolev exponent Multiple solutions Nonhomogeneous Dirichlet boundary conditions.
  • 相关文献

参考文献22

  • 1Ambrosetti A. Critical Points and Nonlinear Variational Problems. M@moire: Bulletin Soc Math, 1992.
  • 2Arioli G, Gazzola F, Grunau H, Sassone E. The second bifurcation branch for radial solutions of the Brezis-Nirenberg problem in dimension four. NoDEA Nonlinear Differential Equations Appl, 2008, 15: 69-90.
  • 3Adachi S, Tanaka K. Four positive solutions for the semilinear elliptic equation: -u + u = a(x)up + f(x) in N. Calc Var Partial Differential Equations, 2000,11:63-95.
  • 4Ambrosetti A, Rabinowitz P. Dual variational methods in critical point theory and applications. J nct Anal, 1973, 14:349-381.
  • 5Bolle P, Ghoussoub N, Tehrani H. The multiplicity of solutions in non-homogeneous boundary value problems. Manuscripta Math, 2000, 101:325-350.
  • 6Brzis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36:437-477.
  • 7Brown K, Wu T. A fibering map approach to a potential operator equation and its applications. Differential Integral Equations, 2009, 22:1097-1114.
  • 8Brown K, Zhang Y. The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J Differential Equations, 2003, 193:481-499.
  • 9Cafiada A, Dr.bek P, Gmez J. Existence of positive solutions for some problems with nonlinear diffusion. Trans Amer Math Soc, 1997, 349:4231-4249.
  • 10Candela A, Salvatore A, Squassina M. Multiple solutions for semilinear elliptic systems with non-homog- eneous boundary conditions. Nonlinear Anal TMA, 2002, 51:249-270.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部