摘要
该文研究了含非齐次Dirichlet边值的Brezis-Nirenberg方程对应泛函的Nehari流形的结构.并结合Lusternik-Schnirelman畴数理论和极大极小原理,证明了含非齐次Dirichlet边值的Brezis-Nirenberg方程存在4个正解.
In this paper,we study the decomposition of Nehari manifold for the BrezisNirenberg problem with nonhomogeneous Dirichlet boundary conditions.By using this result,the Lusternik-Schnirelman category and the minimax principle,we establish a multiple result(four solutions) for the Brezis-Nirenberg problem with nonhomogeneous Dirichlet boundary conditions.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2015年第6期1025-1043,共19页
Acta Mathematica Scientia
基金
中国矿业大学中央高校基本科研业务费(2014QNA67)资助