摘要
非奇异H-矩阵是有着广泛应用的重要矩阵类,但在实用中其判定是十分困难的。本文根据α-对角占优矩阵与非奇异H-矩阵的关系,通过区间细分的方法,得出了非奇异H-矩阵的含参量实用判别法则,对已有的相关结果进行了推广和改进,并用数值算例证实了该判定准则的有效性。
The nonsingular H-matrix is an important class of matrices with wide applications, but it is difficult to determine a nonsin gular H-matrix in practice. In this paper, By the method of subdivided, some iterative criteria with parameter for nonsingular H matrices are given according to the relations of H-diagonally dominant matrices and nonsingular H-matrices, which extent and im prove some related results. The validity of our results is illustrated by some numerical examples.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2016年第1期58-62,共5页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.11361038)
内蒙古自然科学与技术研究基金(No.NJZY13159)
内蒙古民族大学自然科学基金(No.NMD1305)
关键词
非奇异H-矩阵
Α-对角占优矩阵
不可约
非零元素链
nonsingular H-matrix
alpha-diagonally dominant matrix
irreducible
nonzero elements chain