期刊文献+

指数分布极值的分布和矩的渐近展开

Asymptotic Expansion of the Distribution and Moment of Extreme from Exponential Distribution
原文传递
导出
摘要 研究了指数分布规范化最大值的分布和矩的渐近性质,并在最优赋范常数的条件下得到了指数分布规范化最大值的分布和矩的渐近展开,这些展开能够用来得到规范化最大值的分布和矩趋于相应的极值的分布和矩的收敛速度。 In this paper, the asymptotic behaviors of the distribution and moment of normalized maxima for exponential distribution are studied. Under the optimal norming constants, the asymptotic expansions of the distribution and moment of normalized maxima for exponential distribution are derived. These expansions can be used to deduce the convergence rate of the distribution and moment of normalized maxima to the distribution and moment of the corresponding extreme value.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期63-66,共4页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.71461027) 贵州省科技合作计划课题(No.黔科合LH字[2015]7001 No.黔科合LH字[2015]7006 No.黔科合LH字[2015]7055 贵州省自然科学基金(No.黔教合KY[2014]295)
关键词 渐近展开 极值 指数分布 asymptotic expansion moment extreme value exponential distribution
  • 相关文献

参考文献13

  • 1Tian Y Z,Tian M Z,Zhu Q Q. A new generalized linear ex- ponential distribution and its applications[J]. Aeta Math- ematicae Applicatae Sinica: English Series, 2014, 30 (4): 1049-1062.
  • 2BAO Leping,FEI Shumin,YU Lei.EXPONENTIAL STABILITY OF LINEAR DISTRIBUTED PARAMETER SWITCHED SYSTEMS WITH TIME-DELAY[J].Journal of Systems Science & Complexity,2014,27(2):263-275. 被引量:10
  • 3Mathias R. Modeling of magnitude distributions by the generalized truncated exponential distribution[J]. Journal of Seismology, 2015,19 (1) :265-271.
  • 4Wang T,Ding Y S,Zhang L,et al. Delay-dependent expo nential state estimators for stochastic neural networks of neutral type with both discrete and distributed delays[J]. International Journal of Systems Science, 2015,46(4):670- 680.
  • 5Yu H F, Peng C Y. Designing a degradation test with a two parameter exponential lifetime distribution[J]. Commu- nications in Statistics-Simulation and Computation, 2014,43 (8):1938 1958.
  • 6Mohsin M,Kazianka H,Pilz J, et al. A new bivariate expo- nential distribution for modeling moderately negative de pendence[J]. Statistical Methods and Applications, 2014,23(I)123-148.
  • 7Hall W J, Wellner J A. The rate of convergence m law o the maximum of an exponential sample[J]. Statstica Neer- landica, 1979,33(3) : 151-154.
  • 8Peng Z X,Weng Z C,Nadarajah S. Rates of convergence of extremes for mixed exponential distributions[J]. Mathe- matics and Computers in Simulation, 2010,81 (1) : 92-99.
  • 9刘姣姣,陈守全.广义指数分布随机变量序列最大值的收敛速度[J].西南大学学报(自然科学版),2013,35(5):89-92. 被引量:5
  • 10Mc Cord J R. On asymptotic moments of extreme statis- tics[J]. Annals o{ Mathematical Statistics, !964,35 (4) : 1738 1745.

二级参考文献33

  • 1LEADBETTER M R, LINDGREN G, ROOTZEN H. Extremes and Related Properties of Random Sequences and Processes[M]. Berlin: Springer, 1983: 3-5.
  • 2RESNICK S I. Extreme Values, Regular Variation and Point Processes[M]. Berlin: Springer, 1987: 38-54.
  • 3PENG Z, WENG Z, NADARAJAH S. Rates of Convergence of Extremes for Mixed Exponential Distributions[J]. Mathematics and Computer in Simulation, 2010, 81(1): 92-99.
  • 4GUPTA R D, KUNDU D. Generalized Exponential Distributions[J].J Statist, 1999,41(2): 173-188.
  • 5GUPTA R D, KUNDU D. Exponentiated Exponential Family: an Alternative to Gamma and Weibull[J]. Biometrica[J, 200]' 43(1): 117-130.
  • 6GUPTA R D, KUNDU D. Generalized Exponential Distributions: Existing Results and some Recent Developments[J]. Journal Statistical Planning and Inference, 2007, 137: 3537-3547.
  • 7HALL WJ, WELLNERJ A. The Rate of Convergence in Law of the Maximum of an Exponential Sample[J]' Statistica Neerlandica , 1979,33(3): 151-154.
  • 8Lin H and Antsaklis P J, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Control, 2009, 54(2): 308-322.
  • 9Curtain R F and Zwart H, An Introduction to Infinite Dimensional Linear System Theory, Springer, New York, 1995.
  • 10Luo Z H, Guo B Z, and Morgul O, Stability and stabilization for infinite dimensional systems with applications, Springer, London, 1999.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部