期刊文献+

高阶平均向量场方法在Allen-Cahn方程中的应用

High Order Average Vector Field Method of the Allen-Cahn Equation
原文传递
导出
摘要 Allen-Cahn方程是材料科学中描述流体动力学问题和反应扩散问题中的一类重要方程。Allen-Cahn方程的能量具有散逸性,即能量会随着时间的增长会逐渐降低。在数值模拟中,设计精确地保持Allen-Cahn方程能量散逸性的格式对模拟方程的演化具有显著的优点。目前,保Allen-Cahn方程能量散逸性的数值格式都是低阶的。最近有人构造了保持常微分方程能量散逸特性的高阶平均向量场方法,是一种有效的离散梯度法。国内外还少有人把保能量散逸性的高阶离散梯度方法应用于能量散逸性的偏微分方程。利用高阶离散梯度方法构造了Allen-Cahn方程的高阶格式。新的高阶格式能很好地长时间模拟Allen-Cahn方程数值解的演化,并长时间保持Allen-Cahn方程的内在特性。 Allen-Cahn equation is a class of important equation describing fluid dynamics and reaction diffusion problems in material science. The energy of the Allen-Cahn equation has the dissipation property. That is to say, the energy of the Allen-Cahn equation will gradually diminish with time. In numerical simulations, it is significant to design a numerical format which can accurately preserve the energy dissipation property of the Allen-Cahn equation in simulating evolution of the equation. The current numerical formats which can preserve the energy dissipation property of the Allen-Cahn equation are low-order. Recently, the high-order average vector field method which can preserve the energy dissipative property of the differential equations is constructed, which is a kind of efficient discrete gradient method. However, few people apply the high-order discrete gradient method to solve the energy-dissipative partial differential equation at home and abroad. In this paper, a high order scheme of the Allen-Cahn equation is proposed by the high-order discrete gradient method and Fourier pseudospectral method. The new high-order scheme can well simulate the evolution behaviors of numerical solutions of the Allen-Cahn equation with long time. Moreover, the new scheme can also well preserve the intrinsic property of the Allen-Cahn equation with long time.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期86-91,共6页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11161017 No.11561018) 海南省自然科学基金(No.114003) 海南省研究主创新科研课题(No.Hys2015-40)
关键词 高阶离散梯度方法 能量散逸性 Allen-Cahn方程 high order discrete gradient method energy-dissipation property Allen-Cahn equation
  • 相关文献

参考文献13

  • 1Furihata D. A stable and conservative finite difference scheme [or the Cahn-Hilliard equation[J]. Numer Math, 2001,87 : 675-699.
  • 2Jaemin S, Seong-Kwan P, Junseok K. A hybrid FEM for solving the Allen-Cahn equation[J]. Applied Mathematics and Computation, 2014,24,1 .. 606-612.
  • 3Bridges T J, Reich S. Numerical methods for Hamiltonian PDEs[J]. Phys A .. Math Gen, 2006,39 .. 5287-5320.
  • 4Cai J X, Wang Y S. Local structure preserving algorithms for the "good" Boussinesq equation[J]. Journal of Comput Phys, 2013,239 : 72-89.
  • 5Celledoni E, Grimm V, Mclachlan R I, et al, Preserving en- ergy resp. dissipation in numerical PDEs using the average vector field method[J]. Journal of Comput Phys, 2012,231 (20) : 6770-6789.
  • 6Quispel G R W, McLaren D I. A new class of energy-pre- serving numerical integration method[J]. Phys A: Math Theor, 2008,41 045206.
  • 7McLachlan R I, Quispel N R W, Robidoux N. Geometric in- tegration using discrete gradents[J]. Phil Trans Roy Soc A, 1999,357 : 32-56.
  • 8Celledoni E, McLachlan R I, Owren B, et al. Energy-preser- ving integrators and the structure of B-series[M] NTNUReport No. 5,2009.
  • 9McLachlan R I, Quispel G R W. Discrete gradient methods have an energy conservation law[J]. Discrete and Continu- ous Dynamical Systems, 2014,, 34 (3) .. 1099-1104.
  • 10赵鑫,孙建强,何雪珺.Cahn-Hilliard方程的高阶保能量散逸性方法[J].计算数学,2015,37(2):137-147. 被引量:2

二级参考文献21

  • 1郭峰,吴凤珍.MKdV方程的多辛格式[J].河南师范大学学报(自然科学版),2005,33(1):128-129. 被引量:2
  • 2冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2002.
  • 3Bridges T.J.Multisymplectic structures and wave propagation[J].Math.Proc.Camb.Phil.Soc.,1999,121:147-190.
  • 4Bridges T.J.,Reich S.Multisymplectic integrators:numerical schemes for Hamiltonian PDEs that conserve symplecticity[J].Phys.Lett.,2001,284:184-193.
  • 5Bridges T.J.,Reich S.Numerical Methods for Hamiltonian PDEs[J].Jo Phys.A:Math.Gen.,2006,39:5287-5320.
  • 6Bridges T.J.,Reich S.Multisymplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations[J].Physica D,2001,152-153:491-504.
  • 7Chen J.B.,Qin M.Z.Multisymplectic Fourier pseudospectral method for the SchrSdinger equa-tion[J].Electronic Transactions on Numerical Analysis,2001,12:193-204.
  • 8Chen J.B.Symplectic and multisymplectic Fourier pseudospectral Discretzation for the Klein-Gordon equation[J].Letters in Mathematical Physics,2006,75:293-305.
  • 9Jian Wang.A note on multisymplectic Fourier pseud0spectral discretization for the nonlinear Schr(o)dinger equation[J].Applied Mathematics and Computation,2007,191:31-41.
  • 10Furihata D. A stable and conservative finite difference scheme for the Cahn-Hilliard equation[J]. Numer. Math., 2001, 87: 675-699.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部