期刊文献+

Probit回归模型参数的约束EM算法 被引量:1

The restricted EM algorithm on the parameters for Probit regression model
下载PDF
导出
摘要 针对Probit模型提出了n+1-参数的约束EM算法,其中模型的解释变量含有缺失数据,回归参数含有不等式约束条件。EM算法的第M步采用牛顿迭代法,并给出了算法的收敛性证明。 We proposed the restricted EM algorithm for the Probit model with n+l-parameters, The explanatory variables in the model which contain the missing data, and regression parameters containing inequality constraints. The Newton Method is used in the M step for the EM algorithm, and the convergence of the algorithm is proved.
出处 《齐齐哈尔大学学报(自然科学版)》 2016年第1期64-67,共4页 Journal of Qiqihar University(Natural Science Edition)
基金 河南省科技厅自然科学项目(142102210512)
关键词 PROBIT模型 EM算法 不等式约束 Probit model EM algorithm inequality constraints
  • 相关文献

参考文献13

二级参考文献39

  • 1刘咏莲,曲福田,姜海.江苏省农村居民点整理潜力的评价分级[J].南京农业大学学报(社会科学版),2004,4(4):18-23. 被引量:74
  • 2孙凤.主观幸福感的结构方程模型[J].统计研究,2007,24(2):27-32. 被引量:48
  • 3左学金.幸福指数与快乐经济学(笔谈)[J].江西社会科学,2007,27(3):7-12. 被引量:16
  • 4Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm(with discussion). Journal of the Royal Statistical Society, Series B, 1977, 39:1-38.
  • 5Little R J A, Rubin D R. Statistical Analysis with Missing Data. New York: Wiley, 1987.
  • 6Wu C F J. On the convergence properties of the EM algorithm. The Annals of Statistics, 1983, 11: 95- 103.
  • 7Zangwill W I. Nonlinear Programming: A Unified Approach. Englewood Cliffs: Prentice Hall, 1969.
  • 8Boyles R A. On the convergence of the EM algorithm. Journal of the Royal Statistical Society, Series B,1983, 45:47-50.
  • 9Kim D K, Taylor J M G. The restricted EM algorithm for maximum likelihood estimation under linear restrictions on the parameters. Journal of the American Statistical Association, 1995, 430:708-716.
  • 10Dykstra R L, Robertson T, Silvapulle M J. Journal of Statistical Planning and Inference, 2002, 107(1-2).

共引文献53

同被引文献4

  • 1黄荣清.人口死亡的logit模型和双对数模型的比较研究[J].人口与经济,1996(4):10-16. 被引量:6
  • 2Metropolis N, Rosenbluth A W, Rosenblnth M N, et al. Equations of state calculations by fast computing machines[J]. Journal of Chemical Physics, 1953, 21:1087-1091.
  • 3Hastings W K. Monte Carlo sampling methods using Markov chains and their application[J]. Biometrika, 1970, 57:97-109.
  • 4Tanner M, Wong W. The calculation of posterior distributions by data augmentation[J]. Journal of American Statistics, 1987, 82: 528-550.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部