期刊文献+

EMD及小波变换在激波靶像定点中的应用研究

Research on the application of EMD and wavelet transform in the target image of shock wave
下载PDF
导出
摘要 弹丸打向靶面产生弹丸激波,弹丸激波含有噪声,不能直接用来判断射击者的实力,需要去噪。小波变换比较适合对于弹丸激波的去噪,采用了"sym8"小波,进行了8层分解。通过比较,选择了Birge-Massart算法,Garrote阈值函数。最终,将EMD与小波去噪联合起来对弹丸激波进行去噪。此种方法可有效去噪。 The shock wave is produced when a projectile hits the target surface,the shock of the projectile can not be directly used to judge the strength of the shooter. Wavelet transform is more suitable for the shock of the projectile to noise,use the "Sym8" wavelet,8 layers of decomposition. By comparison,the irge-Massart algorithm is selected,and the Garrote threshold function is selected. Finally,the EMD and wavelet denoising combined with the projectile shock wave is carried out. This method can effectively reduce the noise.
出处 《信息通信》 2015年第12期37-38,共2页 Information & Communications
关键词 弹丸激波 EMD 小波变换 Garrote阈值 shock wave EMD wavelet denoising Garrote threshold
  • 相关文献

参考文献5

二级参考文献24

  • 1张琦,阙沛文,陈天璐.基于经验模态分解的管道超声回波信号噪声消除[J].测试技术学报,2006,20(6):508-511. 被引量:9
  • 2DONOHO D L. Denoising by soft-thresholding [ J]. IEEE Transactions on Information Theory, 1995, 41(3):613-627.
  • 3DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3):425-455.
  • 4HUANG N E, SHEN Z, LONG S R et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc R Soc Lond A, 1998, 454( 1971 ) :903-995.
  • 5BOUDRAA A O, CEXUS J C. EMD-based signal filtering[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6) :2196-2202.
  • 6PATRICK FLANDRIN, GABRIEL RILLING, PAULO GONCALVES. Empirical mode decomposition as a filter bank[ J]. IEEE Signal Processing Letters, 2004, 11(2):112-114.
  • 7BILLING G, FLANDRIN P, GONCALVES P, et al. On empirical mode decomposition and its algorithms[C]// IEEE EURSSIP Workshop on Nonlinear Signal Image Processing. Italy: Grado, NSIP-03, Grado(I), 2003, 8-11.
  • 8WU Z H, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proc R Soc London A, 2004, 460:1597-1611.
  • 9MALLAT S, HWANG L. Singularity detection and processing with wavelets[J]. IEEE Trans on Information Theory, 1992,38(2) : 617.
  • 10Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994, 81 (12):425--455.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部