期刊文献+

苎麻纺纱各工序性能指标的预测 被引量:1

Prediction on Yarn Performance in Ramie Spinning Process by BP Neural Network
下载PDF
导出
摘要 文章运用灰色关联分析法分析了苎麻纺纱过程中前道工序的性能指标对下道工序性能指标的影响,并结合BP神经网络建立了梳麻、精梳、末道并条、二道粗纱、细纱各工序中半成品或成品的性能指标的预测模型,各模型的平均预测误差均低于10%,这表明这些模型用于预测是可行的。 The grey relational analysis was applied to analyze the effect of performances in former process to the next process,then combined with BP neural network to set up the forecast models of the products' performances in the carding,combing,finishing drawing,roving and spinning processes.The mean relative error between the predicted results and measured values was less than 10%,which shows that these models were available in practice.
出处 《山东纺织科技》 2015年第6期4-7,共4页 Shandong Textile Science & Technology
基金 山东省教育厅第三批科技计划项目(项目编号:J06K63)
关键词 苎麻 BP神经网络 灰关联分析 预测 ramie spinning BP neural network grey relational analysis prediction
  • 相关文献

参考文献4

  • 1Zeguang Pei, Chongwen Yu. Prediction of the vortex yarn tenacity from some process and nozzle parameters based on numerical simulation and artificial neural network[J]. Tex- tile Research Journal,2011,0(00) :1--12.
  • 2李晓峰.苎麻纤维原料品质与成纱品质指标的灰关联分析[J].纺织学报,2006,27(1):20-22. 被引量:10
  • 3Guifen Yao, Jiansheng Guo, and Yongyuan Zhou. Predic ting the warp breakage rate in weaving by neural network techniques[J]. Textile Research Journal, 2005, 75 ( 3 ) : 274--278.
  • 4Daqi Guo, Study on the linear primary {unction {orword three layers neural . networks architecture with teachers [J]. Journal of Computers, 1998,21(1) :80--86.

二级参考文献5

共引文献9

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部