期刊文献+

Compensating the effects of DC bias lines on terahertz photomixer antennas using resistively loaded lines

Compensating the effects of DC bias lines on terahertz photomixer antennas using resistively loaded lines
下载PDF
导出
摘要 This paper proposed a method,namely resistively loaded lines(RLL),to compensate the effects of the DC bias lines after investigating its effects on several types of antennas for terahertz photomixers.The RLL is formed by placing lumped resistances periodically on the DC bias line in order to cease the leakage current virtually,w hich cause a significant amount of distortion on the antenna performance.The simulation results of the dipole,folded dipole,log-periodic,and spiral antennas show that RLL almost removes the effects of the bias lines and improves the antenna radiation resistance and radiation pattern notably compared w ith that of the commonly used bias line types,such as coplanar stripline and photonic bandgap type bias lines. This paper proposed a method,namely resistively loaded lines( RLL),to compensate the effects of the DC bias lines after investigating its effects on several types of antennas for terahertz photomixers. The RLL is formed by placing lumped resistances periodically on the DC bias line in order to cease the leakage current virtually,which cause a significant amount of distortion on the antenna performance. The simulation results of the dipole,folded dipole,log-periodic,and spiral antennas showthat RLL almost removes the effects of the bias lines and improves the antenna radiation resistance and radiation pattern notably compared with that of the commonly used bias line types,such as coplanar stripline and photonic bandgap type bias lines.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2015年第4期420-426,共7页 Journal of Infrared and Millimeter Waves
基金 Supported by TUBITAK(114E089) Yildirim Beyazit University(BAP-585)
关键词 红外技术 毫米波技术 光电技术 应用 terahertz photomixer antenna DC bias line millimeterwave
  • 相关文献

参考文献41

  • 1Smith P R, Auston D H, Nuss M C. Subpicosecond photocon- ducting dipole antennas [ J ]. IEEE J. Quantum Electron. , 1988, 24(2) : 255.
  • 2Exter M V, Grischkowsky D. Characterization of an optoelec- tronic terahertz beam system [ J ]. IEEE Trans. Microw. Theo- ry Tech., 1990, 38(11): 1684-8.
  • 3Hu B B, Nuss M C. Imaging with terahertz waves [ J ]. Opt. Lett. , 1995, 20(16) : 1716-3.
  • 4Mittleman D M, Jacobsen R H, Nuss M C. T-ray imaging [J]. IEEE J. Sel. Topics Quantum Electron. , 1996, 2(3) : 679-14.
  • 5Markelz A, Whitmire S, Hillebrecht J, Birge R. THz time do- main spectroscopy of biomolecular conformational modes [ J ]. Phys. Med. Biol. , 2002, 47(21 ) : 3739-67.
  • 6Zeitler J A, Taday P F, Newnham D A, Pepper M, Gordon KC, Rades T. Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review [ J ]. J. Pharm. Phar- mtwol. , 2007, 59(2) : 209-25.
  • 7Rowe D G. Terahertz takes to the stage [ J ]. Nature Photon. , 2007, 1 : 75-3.
  • 8Tonouchi M. Cutting-edge terahertz technology [ J ]. Nature Photon. , 2007, 1: 97-9.
  • 9Mukherjee P, Gupta B. Terahertz (THz) frequency sources and antennas - A brief review [ J ]. Int. J. Infrared Milli. , 2008, 29 (12) : 1091-12.
  • 10Siegel P H. Terahertz technology [ J ]. IEEE Trans. Microw. Theory Tech. , 2002, 50(3) : 910-19.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部